Control de Velocidad basado en Lógica Borrosa para Entornos Urbanos Congestionados

  1. Milanés, V. 1
  2. Onieva, E. 1
  3. J. Pérez 1
  4. de Pedro, T. 1
  5. González, C. 1
  1. 1 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2009

Volumen: 6

Número: 4

Páginas: 61-68

Tipo: Artículo

DOI: 10.1016/S1697-7912(09)70109-8 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Los sistemas de control de crucero adaptativo permiten, adecuando la velocidad, realizar el seguimiento del vehículo precedente en autopistas mientras este vehículo no se detenga. Sin embargo, en áreas urbanas donde la congestión del tráfico obliga a continuas detenciones, este sistema pierde funcionalidad ya que, una vez detenido el vehículo, el conductor debe reactivar el sistema. En este artículo, se presenta un sistema de control de velocidad mediante lógica borrosa para situaciones continuadas de parada y arranque, en las que la velocidad del vehículo es inferior a diez kilómetros por hora. El sistema se ha implantado y probado en un vehículo comercial con excelentes resultados.

Referencias bibliográficas

  • Bernardos, A. (2003), “Tecnologías de Localización,” en Centro de Difusión de Tecnologías ETSIT-UPM, Diciembre.
  • Blythe, P.T and Curtis, A. (2004), “Advanced Driver Assistance Systems: Gimmick or Reality,” en 11th World Congress on Intelligent Transport Systems and Services, Nagoya, Japan.
  • Brookhuis, K. A., de Waard, D. and Janssen, W. H. (2001), “Behavioural impacts of Advanced Driver Assistance Systems–an overview”, en European Journal of Transport and Infrastructure Research, vol. 1, no. 3, pp. 245-253, Noviembre.
  • Dragone, D. (2009), “I am getting tired: Effort and fatigue in intertemporal decision-making” en Journal of Economic Psychology, vol. 3, issue 4, pp. 552-562, Agosto.
  • De Micheli, E. and Verri, A. (1993), “Vehicle guidance from one dimensional optical flow,” IEEE Symposium on Intelligent Vehicles, Tokio, Japan.
  • García, R. and de Pedro, T. (1998), “Modeling a fuzzy coprocessor and its programming language”, Mathware and Soft Computing, vol, 5, nº. 2-3, pp 167-174.
  • García, R. and de Pedro, T. (2000), “First Application of the ORBEX Coprocessor: Control of Unmanned Vehicles”, 1999 EUSFLAT-ESTYLF Joint Conference. Mathware and Soft Computing, n. 7, vol. 2-3, pp. 265-273.
  • Graefe, V. (1993), “Vision for Intelligent Road Vehicles,” IEEE Symposium on Intelligent Vehicles, Tokio, Japan, 135-141.
  • Hofmann, U., Rieder, A. and Dickmanns, E.D. (2003), “Radar and vision data fusion for hybrid adaptive cruise control on highways”, Machine Vision and Applications. vol. 14, n. 1, pp. 42 – 49, Abril.
  • Ioannou, P. and Chien, C. (1993), “Autonomous intelligent cruise control,” IEEE Trans. Veh. Technol., vol. 42, pp. 657-672.
  • Kesting, A., Treiber, M., Schönhof, M. and Helbing, D. (2008), "Adaptive cruise control design for active congestion avoidance" en Transportation Research: Part C, vol. 16, pp. 668-683.
  • Libro Blanco (2001). La política europea de transportes de cara al 2010: la hora de la verdad. European Transport Commissionn Bruselas, Septiembre 2001.
  • Lin, T.W., Hwang, S.L. and Green, P.A. (2009), “Effects of time-gap settings of adaptive cruise control (ACC) on driving performance and subjective acceptance in a bus driving simulator” en Safety Science, vol. 47, no. 5, pp. 620-625.
  • Milanés, V., González, C., Naranjo, J.E., Onieva, E. and de Pedro, T. (2009), “Eletro-hydraulic Braking System for Autonomous Vehicles” en International Journal of Automotive Technlogy, aceptado el 25 de Mayo (in press).
  • Milanés, V., Naranjo, J.E., González, C., Alonso, J., García, R. and de Pedro, T. (2008), “Sistema de Posicionamiento para Vehículos Autónomos,” en Revista Iberoamericana de Automática e Informática Industrial, vol. 5, n. 4, pp. 36-41, Octubre.
  • Moon, S., Moon, I. and Kyongsu Y. (2009), "Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance", en Control Engineering Practice, vol. 17, pp. 442-455.
  • Müller, R. and Nucker, G. (1992), “Intelligent Cruise Control with Fuzzy Logic” en Intelligent Vehicles Symposium, pp. 173-178, Junio.
  • Wong, C., Riley, J.L., Martin, D., Huff, L.C., Hall, L., Gill, S. and Foote, R. (2000), “NOS RTK Final Report”, NOAA Center for Operational Oceanographic Products and Services, Agosto.
  • Pauwelussen, J. and Minderhoud, M. (2008), “The effects of deactivation and (re)activation of ACC on driver behaviour analyzed in real traffic,” en IEEE Intelligent Vehicle Symposium, pp. 257-262, Junio.
  • Pérez, J., Onieva, E., de Pedro, T., García, R., Alonso, J., Milanés, V., and González, C. (2008), “Comunicación entre Vehículos Autónomos en Tiempo Real, para Maniobras de Alto Riesgo”, en XXIX Jornadas de Automática, Tarragona, Septiembre.
  • Pomerleau, D. A. (1989), “ALVINN: an autonomus land vehicle in a neuronal network”, en Advances in neuronal information processing systems 1, pp. 305-313.
  • Rossetter, E. J. and Gerdes, J. C. (2002), “Performance guarantees for hazard based lateral vehicle control,” en Proc. 2002 IMECE Conf.
  • Serrano, J.I., Alonso, J., del Castillo, M.D. and Naranjo, J.E. (2005), “Evolutionary optimization of autonomous vehicle tracks” en IEEE Congress on Evolutionary Computation, vol. 2, pp. 1332-1339, Septiembre.
  • Sheikholeslam, S. and Desoer, C. A. (1992), “Design of Decentralized Adaptive Controllers for a Class of Interconnected Nonlinear Dynamical Systems: Part I,” Department of Electrical Engineering and Computer Sciences, Institute of Transportation Studies University of California, Berkeley, CA, PATH Technical Memorandum 92-1, Febrero.
  • Sotelo, M.A. and Naranjo, J.E. (2004), “Vision-based Adaptive Cruise Control for Intelligent Road Vehicles,” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 64-69, Septiembre.
  • Stein, G. P., Mano, O. and Shashua A., (2003), “Vision-based ACC with a Single Camera: Bounds on Range and Range Rate Accuracy” IEEE Intelligent Vehicles Symposium (IV2003), Junio 2003, Columbus, OH.
  • Sugeno, M. (1999), “On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents”, en IEEE Trans. on Fuzzy Systems, vol. 7, no. 2, pp. 201-224, Abril.
  • Urmson C. et al. (2006), “A robust Approach to High-Speed Navigation for Unrehearsed Desert Terrain”, en Journal of Field Robotics. vol. 23, n. 8, pp. 467-508.
  • Woll, J. (1997), “Radar Based Adaptive Cruise Control for Truck Applications,”, SAE Paper 973 184.
  • Zadeh, L. A. (1965), “Fuzzy sets”, en Information and Control, vol. 8, pp. 338–353.