Two-weight mixed norm estimates for a generalized spherical mean radon transform acting on radial functions
- Ciaurri, O. 2
- Nowak, A. 3
- Roncal, L. 1
-
1
Basque Center for Applied Mathematics
info
-
2
Universidad de La Rioja
info
- 3 Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland
ISSN: 0036-1410
Año de publicación: 2017
Volumen: 49
Número: 6
Páginas: 4402-4439
Tipo: Artículo
Otras publicaciones en: SIAM Journal on Mathematical Analysis
Resumen
We investigate a generalized spherical means operator, in other words the generalized spherical mean Radon transform, acting on radial functions. We establish an integral representation of this operator and find precise estimates of the corresponding kernel. As the main result, we prove two-weight mixed norm estimates for the integral operator, with general power weights involved. This leads to weighted Strichartz-Type estimates for solutions to certain Cauchy problems for classical Euler{Poisson{Darboux and wave equations with radial initial data. © 2017 Society for Industrial and Applied Mathematics.