Universidad del País Vasco/Euskal Herriko Unibertsitatea-ko ikertzaileekin lankidetzan egindako argitalpenak (27)

2019

  1. Comparing stochastic Lotka–Volterra predator-prey models

    Applied Mathematics and Computation, Vol. 360, pp. 181-189

2016

  1. Extinction-time for stochastic population models

    Journal of Computational and Applied Mathematics, Vol. 295, pp. 159-169

  2. Numerical simulations of time-dependent partial differential equations

    Journal of Computational and Applied Mathematics, Vol. 295, pp. 175-184

  3. On the Historical Exchange Rates Euro/US Dollar

    Computational Economics, Vol. 48, Núm. 3, pp. 463-472

2015

  1. Persistence-time estimation for some stochastic SIS epidemic models

    Discrete and Continuous Dynamical Systems - Series B, Vol. 20, Núm. 9, pp. 2933-2947

2013

  1. A Sylvester-based IMEX method via differentiation matrices for solving nonlinear parabolic equations

    Communications in Computational Physics, Vol. 14, Núm. 4, pp. 1001-1026

  2. The solution of two-dimensional advection-diffusion equations via operational matrices

    Applied Numerical Mathematics, Vol. 72, pp. 172-187

2012

  1. A mean extinction-time estimate for a stochastic Lotka-Volterra predator-prey model

    Applied Mathematics and Computation, Vol. 219, Núm. 1, pp. 170-179

  2. Numerical simulation of the N-dimensional sine-Gordon equation via operational matrices

    Computer Physics Communications, Vol. 183, Núm. 4, pp. 864-879

2010

  1. An integrating factor for nonlinear Dirac equations

    Computer Physics Communications, Vol. 181, Núm. 7, pp. 1195-1203

  2. Global self-regulation of the cellular metabolic structure

    PLoS ONE, Vol. 5, Núm. 3

2009

  1. A numerical simulation for the blow-up of semi-linear diffusion equations

    International Journal of Computer Mathematics, Vol. 86, Núm. 3, pp. 493-502

  2. The number of catalytic elements is crucial for the emergence of metabolic cores

    PLoS ONE, Vol. 4, Núm. 10

2008

  1. An exponential time differencing method for the nonlinear Schrödinger equation

    Computer Physics Communications, Vol. 179, Núm. 7, pp. 449-456