Sonia
Arrasate Gil
Universidade da Coruña
La Coruña, EspañaPublicaciones en colaboración con investigadores/as de Universidade da Coruña (12)
2024
-
MATEO: intermolecular α-amidoalkylation theoretical enantioselectivity optimization. Online tool for selection and design of chiral catalysts and products
Journal of Cheminformatics, Vol. 16, Núm. 1
2022
-
Prediction of Antileishmanial Compounds: General Model, Preparation, and Evaluation of 2-Acylpyrrole Derivatives
Journal of chemical information and modeling, Vol. 62, Núm. 16, pp. 3928-3940
2021
-
Molecular docking, SAR analysis and biophysical approaches in the study of the antibacterial activity of ceramides isolated from Cissus incisa
Bioorganic Chemistry, Vol. 109
-
Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents
European Journal of Medicinal Chemistry, Vol. 220
-
Prediction of anti-glioblastoma drug-decorated nanoparticle delivery systems using molecular descriptors and machine learning
International Journal of Molecular Sciences, Vol. 22, Núm. 21
2020
-
MCDcalc: Markov chain molecular descriptors calculator for medicinal chemistry
Current Topics in Medicinal Chemistry, Vol. 20, Núm. 4, pp. 305-317
-
Perturbation-theory machine learning (PTML) multilabel model of the CheMBL dataset of preclinical assays for antisarcoma compounds
ACS Omega, Vol. 5, Núm. 42, pp. 27211-27220
-
Prediction of antimalarial drug-decorated nanoparticle delivery systems with random forest models
Biology, Vol. 9, Núm. 8, pp. 1-15
-
Ptml multi-label algorithms: Models, software, and applications
Current Topics in Medicinal Chemistry, Vol. 20, Núm. 25, pp. 2326-2337
2016
-
Data analysis in chemistry and bio-medical sciences
International Journal of Molecular Sciences
2013
-
MIANN models in medicinal, Physical and Organic Chemistry
Current Topics in Medicinal Chemistry, Vol. 13, Núm. 5, pp. 619-641
2011
-
Markov Entropy Centrality: Chemical, Biological, Crime, and Legislative Networks
TOWARDS AN INFORMATION THEORY OF COMPLEX NETWORKS: STATISTICAL METHODS AND APPLICATIONS (BIRKHAUSER BOSTON), pp. 199-258