Mitigación de vibraciones con control del flujo de aire basado en GA-ANFIS de una turbina eólica marina flotante híbrida con columnas de agua oscilantes

  1. M'zoughi, Fares 1
  2. Aboutalebi, Payam 1
  3. Ahmad, Irfan 1
  4. Bagheri Rouch, Tahereh 1
  5. Garrido, Izaskun 1
  6. Garrido, Aitor J. 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Journal:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Year of publication: 2024

Issue: 45

Type: Article

DOI: 10.17979/JA-CEA.2024.45.10975 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

Abstract

This paper introduces a novel approach to model and stabilize a Floating Offshore Wind Turbine (FOWT) by employing Oscillating Water Columns (OWC) as an active structural control system. The innovative concept involves designing a new floating barge-like platform with integrated OWCs on opposite sides of the platform to mitigate undesired oscillations of the system. These OWCs counteract the bending forces caused by wind on the tower and waves on the barge platform. To synchronize the opposing forces with the system's tilting, a proposed Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System-based airflow control strategy is employed. Through manipulation of the barge platform’s pitch angle, the GA-ANFIS airflow control system adjusts the valves on either side, opening one and closing the other accordingly. Simulation results, compared with a standard FOWT demonstrate the effectiveness of the GA-ANFIS airflow control. It is shown to be superior in reducing platform pitching and the fore-aft translation of the tower top.

Bibliographic References

  • Aboutalebi, P., Garrido, A.J., Garrido, I., Nguyen, D.T. and Gao, Z. 2024. Hydrostatic stability and hydrodynamics of a floating wind turbine platform integrated with oscillating water columns: A design study. Renewable Energy 221, 119824. DOI: 10.1016/j.renene.2023.119824 DOI: https://doi.org/10.1016/j.renene.2023.119824
  • Aboutalebi, P., M’zoughi, F., Garrido, I. and Garrido, A.J. 2023. A control technique for hybrid floating offshore wind turbines using oscillating water columns for generated power fluctuation reduction. Journal of Computational Design and Engineering 10(1), 250-265. DOI: 10.1093/jcde/qwac137 DOI: https://doi.org/10.1093/jcde/qwac137
  • Ahmad, I., M’zoughi, F., Aboutalebi, P., Garrido, I. and Garrido, A.J. 2023. A regressive machine-learning approach to the non-linear complex FAST model for hybrid floating offshore wind turbines with integrated oscillating water columns. Scientific Reports 13(1), 1499. DOI: 10.1038/s41598-023-28703-z DOI: https://doi.org/10.1038/s41598-023-28703-z
  • Ahmad, I., Mzoughi, F., Aboutalebi, P., Garrido, I. and Garrido, A. 2022. A Machine-Learning Approach for the Development of a FOWT Model Integrated with Four OWCs. In 2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC). pp. 72-76. Crete, Greece. IEEE. DOI: 10.1109/CSCC55931.2022.00023 DOI: https://doi.org/10.1109/CSCC55931.2022.00023
  • Bagheri Rouch, T., Fakharian, A. 2022. Robust control of islanded DC microgrid for voltage regulation based on polytopic model and load sharing. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 46(1), 171-186. DOI: 10.1007/s40998-021-00462-5 DOI: https://doi.org/10.1007/s40998-021-00462-5
  • Hu, J., Zhou, B., Vogel, C., Liu, P., Willden, R., Sun, K., Zang, J., Geng, J., Jin, P., Cui, L. and Jiang, B. 2020. Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters. Applied energy 269, 114998. DOI: 10.1016/j.apenergy.2020.114998 DOI: https://doi.org/10.1016/j.apenergy.2020.114998
  • Hu, Y. and He, E. 2017. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper. Journal of Sound and Vibration 410, 447-472. DOI: 10.1016/j.jsv.2017.08.050 DOI: https://doi.org/10.1016/j.jsv.2017.08.050
  • Hu, Y., Wang, J., Chen, M.Z., Li, Z. and Sun, Y. 2018. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control. Engineering Structures 177, 198-209. DOI: 10.1016/j.engstruct.2018.09.063 DOI: https://doi.org/10.1016/j.engstruct.2018.09.063
  • Jonkman, J., 2008, January. Influence of control on the pitch damping of a floating wind turbine. In 46th AIAA aerospace sciences meeting and exhibit. pp. 1-15, Reno, NV, USA. DOI: 10.2514/6.2008-1306 DOI: https://doi.org/10.2514/6.2008-1306
  • Jonkman, J.M., 2007. Dynamics modeling and loads analysis of an offshore floating wind turbine. Doctoral’s Dissertation, Department of Aerospace Engineering Sciences, University of Colorado, Colorado, USA. DOI: https://doi.org/10.2172/921803
  • Kaldellis, J.K., Kapsali, M. 2013. Shifting towards offshore wind energy-Recent activity and future development. Energy policy 53, 136-148. DOI: 10.1016/j.enpol.2012.10.032 DOI: https://doi.org/10.1016/j.enpol.2012.10.032
  • Kamarlouei, M., Gaspar, J.F., Calvario, M., Hallak, T.S., Mendes, M.J., Thiebaut, F., Soares, C.G., 2020. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform. Renewable Energy 152, 1171-1185. DOI: 10.1016/j.renene.2020.01.078 DOI: https://doi.org/10.1016/j.renene.2020.01.078
  • Kluger, J.M., Slocum, A.H. and Sapsis, T.P. 2017. A first-order dynamics and cost comparison of wave energy converters combined with floating wind turbines. In 27th International Ocean and Polar Engineering Conference, San Francisco, California, USA. ISBN: 978-1-880653-97-5
  • Lackner, M.A. and Rotea, M.A. 2011. Structural control of floating wind turbines. Mechatronics, 21(4), 704-719. DOI: 10.1016/j.mechatronics.2010.11.007 DOI: https://doi.org/10.1016/j.mechatronics.2010.11.007
  • M’zoughi, F., Aboutalebi, P., Ahmad, I., Garrido, I. and Garrido, A.J., 2022, July. Dual Airflow Control Strategy for Floating Offshore Wind Turbine Stabilization Using Oscillating Water Columns. In APCA International Conference on Automatic Control and Soft Computing. 428-438. Cham: Springer International Publishing. DOI: 10.1007/978-3-031-10047-5_38 DOI: https://doi.org/10.1007/978-3-031-10047-5_38
  • M’zoughi, F., Aboutalebi, P., Garrido, I., Garrido, A.J. and De La Sen, M. 2021. Complementary airflow control of oscillating water columns for floating offshore wind turbine stabilization. Mathematics 9(12), 1364. DOI: 10.3390/math9121364 DOI: https://doi.org/10.3390/math9121364
  • M’zoughi, F., Garrido, I. and Garrido, A.J. 2020. Symmetry-breaking for airflow control optimization of an oscillating-water-column system. Symmetry 12(6), 895. DOI: 10.3390/sym12060895 DOI: https://doi.org/10.3390/sym12060895
  • M’zoughi, F., Garrido, I., Garrido, A.J. and De La Sen, M. 2023. Fuzzy airflow-based active structural control of integrated oscillating water columns for the enhancement of floating offshore wind turbine stabilization. International Journal of Energy Research, 2023. DOI: 10.1155/2023/4938451 DOI: https://doi.org/10.1155/2023/4938451
  • M'zoughi, F., Garrido, A.J., Garrido, I., Bouallègue, S. and Ayadi, M., 2018, June. Sliding mode rotational speed control of an oscillating water column-based wave generation power plants. In 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). pp. 1263-1270. Amalfi, Italy. IEEE. DOI: 10.1109/SPEEDAM.2018.8445229 DOI: https://doi.org/10.1109/SPEEDAM.2018.8445229
  • Pérez-Collazo, C., Greaves, D., Iglesias, G. 2015. A review of combined wave and offshore wind energy. Renewable and sustainable energy reviews 42, 141-153. DOI: 10.1016/j.rser.2014.09.032 DOI: https://doi.org/10.1016/j.rser.2014.09.032
  • Slocum, A., Kluger, J. and Mannai, S. 2019, July. Energy harvesting and storage system stabilized offshore wind turbines. In 2019 Offshore Energy and Storage Summit (OSES). pp. 1-6. BREST, France. IEEE. DOI: 10.1109/OSES.2019.8867345 DOI: https://doi.org/10.1109/OSES.2019.8867345
  • Stewart, G. and Lackner, M. 2013. Offshore wind turbine load reduction employing optimal passive tuned mass damping systems. IEEE Transactions on Control Systems Technology 21(4), 1090-1104. DOI: 10.1109/TCST.2013.2260825 DOI: https://doi.org/10.1109/TCST.2013.2260825
  • Vijfhuizen, W.J.M.J., 2006. Design of a Wind and Wave Power Barge. Master’s Dissertation, Department of Naval Architecture and Mechanical Engineering, Universities of Glasgow and Strathclyde, Glasgow, Scotland.