Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface

  1. Li, Jingcheng 1
  2. Sanz, Sofia 2
  3. Castro-Esteban, Jesus 3
  4. Vilas-Varela, Manuel 3
  5. Friedrich, Niklas 1
  6. Frederiksen, Thomas 4
  7. Peña, Diego 3
  8. Pascual, Jose Ignacio 5
  1. 1 Centro de Investigación Cooperativa en Nanociencias
    info

    Centro de Investigación Cooperativa en Nanociencias

    San Sebastián, España

  2. 2 Donostia International Physics Center
    info

    Donostia International Physics Center

    San Sebastián, España

    ROR https://ror.org/02e24yw40

  3. 3 CiQUS & Universidade de Santiago de Compostela
  4. 4 DIPC & Ikerbasque
  5. 5 CIC nanoGUNE & Ikerbasque

Editor: Zenodo

Año de publicación: 2020

Tipo: Dataset

CC BY 4.0

Resumen

OPEN DATA related to the research publication: J. Li, S. Sanz, J. Castro-Esteban, M. Vilas-Varela, N. Friedrich, T. Frederiksen, D. Peña, and J. I. Pascual, <em>Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface</em>, Phys. Rev. Lett. <strong>124</strong>, 177201 (2020) [arXiv:1912.08298] Abstract: Graphene can develop large magnetic moments in custom-crafted open-shell nanostructures such as triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene nanosystems on surfaces succeeded in producing atomically precise open-shell structures, but demonstration of their net spin remains elusive to date. Here, we fabricate triangulenelike graphene systems and demonstrate that they possess a spin S=1 ground state. Scanning tunneling spectroscopy identifies the fingerprint of an underscreened S=1 Kondo state on these flakes at low temperatures, signaling the dominant ferromagnetic interactions between two spins. Combined with simulations based on the meanfield Hubbard model, we show that this S=1 π paramagnetism is robust and can be turned into an S=1/2 state by additional H atoms attached to the radical sites. Our results demonstrate that π paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the quantum behavior of interacting π spins in graphene systems.