Estimation of logistic regression parameters for complex survey datasimulation study based on real survey data

  1. Amaia Iparragirre 1
  2. Irantzu Barrio 1
  3. Jorge Aramendi 2
  4. Inmaculada Arostegui 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  2. 2 Instituto Vasco de Estadística
Revista:
Sort: Statistics and Operations Research Transactions

ISSN: 1696-2281

Año de publicación: 2024

Volumen: 48

Número: 1

Páginas: 67-92

Tipo: Artículo

DOI: 10.57645/20.8080.02.14 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Sort: Statistics and Operations Research Transactions

Resumen

In complex survey data, each sampled observation has assigned a sampling weight, indicating the number of units that it represents in the population. Whether sampling weights should or not be considered in the estimation process of model parameters is a question that still continues to generate much discussion among researchers in different fields. We aim to contribute to this debate by means of a real data based simulation study in the framework of logistic regression models. In order to study their performance, three methods have been considered for estimating the coefficients of the logistic regression model: a) the unweighted model, b) the weighted model, and c) the unweighted mixed model. The results suggest the use of the weighted logistic regression model is superior, showing the importance of using sampling weights in the estimation of the model parameters.