Characterization of Historic Lime Mortars from the Arch of San Martin to Identify the Construction Phases of the City Wall of Burgos (Spain)

  1. Ponce-Antón, Graciela 1
  2. Zuluaga, Maria Cruz 1
  3. Ortega, Luis Ángel 1
  4. Jiménez Echevarría, Javier 2
  5. Alonso Fernández, Carmen 2
  1. 1 Department of Geology, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
  2. 2 Cronos S.C. Arqueología y Patrimonio, C/Aparicio y Ruíz 16, 4, 09003 Burgos, Spain
Revista:
Minerals

ISSN: 2075-163X

Año de publicación: 2024

Volumen: 14

Número: 2

Páginas: 147

Tipo: Artículo

DOI: 10.3390/MIN14020147 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Minerals

Resumen

Historical lime mortars provide valuable information on the construction phases of buildings and allow reconstruction of the chronology of the historical structures. The City Wall of Burgos and the Mudejar Arch of San Martin were declared an Asset of Cultural Interest and have been protected since 1949. Several restorations at the end of the 20th century altered the original appearance of the wall and the current gate, making it difficult to establish stratigraphic relationships between the two structures. Given the scarcity of information on the construction phases of the wall and the uncertainty of the historical dates, a mineralogical and chemical characterization of the mortars was carried out, and the suitability of the binder for radiocarbon dating was assessed. The petrographic, mineralogical and chemical analyses of the lime mortars from the Arc of San Matin show distinctive characteristics, suggesting different construction periods and production processes, where the selection of raw materials and production methods was conducted according to the construction requirements. Moreover, the presence of contaminant phases and microparticles of charcoal in the binder fraction led to discard all the samples for mortar radiocarbon dating.

Información de financiación

Financiadores

  • Basque Country Government
    • IT1442-22

Referencias bibliográficas

  • Secco, (2019), J. Cult. Herit., 40, pp. 265, 10.1016/j.culher.2019.04.016
  • Chiarelli, (2015), Constr. Build. Mater., 96, pp. 442, 10.1016/j.conbuildmat.2015.08.023
  • Lezzerini, (2018), Measurement, 126, pp. 322, 10.1016/j.measurement.2018.05.057
  • Gheris, (2023), Herit. Sci., 11, pp. 103, 10.1186/s40494-023-00942-3
  • Miriello, (2018), Mater. Charact., 146, pp. 189, 10.1016/j.matchar.2018.09.046
  • Miriello, (2010), J. Archaeol. Sci., 37, pp. 2207, 10.1016/j.jas.2010.03.019
  • Miriello, (2015), Geoarchaeology, 30, pp. 330, 10.1002/gea.21515
  • Dilaria, (2022), Archaeometry, 64, pp. 866, 10.1111/arcm.12746
  • Riccardi, (2008), Archaeometry, 50, pp. 85, 10.1111/j.1475-4754.2007.00337.x
  • Genestar, (2006), Anal. Chim. Acta, 557, pp. 373, 10.1016/j.aca.2005.10.058
  • Miriello, (2015), Archaeometry, 57, pp. 100, 10.1111/arcm.12074
  • Alonso-Olazabal, A., Ortega, L.A., Zuluaga, M.C., Ponce-Antón, G., Jiménez Echevarría, J., and Alonso Fernández, C. (2020). Compositional characterization and chronology of roman mortars from the archaeological site of arroyo de la dehesa de velasco (Burgo de osma-ciudad de osma, Soria, Spain). Minerals, 10.
  • TC 203-RHM (Jan Erik Lindqvist) (2009). Rilem TC 203-RHM: Repair mortars for historic masonry. Testing of hardened mortars, a process of questioning and interpreting. Mater. Struct., 42, 853–865.
  • Anna, (2014), Environ. Earth Sci., 71, pp. 1699, 10.1007/s12665-013-2574-x
  • Hughes, (2000), Mater. Struct., 33, pp. 594, 10.1007/BF02480541
  • Morillas, (2018), Constr. Build. Mater., 178, pp. 384, 10.1016/j.conbuildmat.2018.05.168
  • Nogueira, (2018), Cem. Concr. Compos., 89, pp. 192, 10.1016/j.cemconcomp.2018.03.005
  • Lanas, (2003), Cem. Concr. Res., 33, pp. 1867, 10.1016/S0008-8846(03)00210-2
  • (2014), Radiocarbon, 56, pp. 245, 10.2458/56.16945
  • (2015), Radiocarbon, 57, pp. 851, 10.2458/azu_rc.57.18197
  • Hodgins, (2011), J. Archaeol. Sci., 38, pp. 485, 10.1016/j.jas.2010.08.018
  • Nawrocka, (2007), Radiocarbon, 49, pp. 625, 10.1017/S0033822200042521
  • Krofta, (2023), Radiocarbon, 2023, pp. 1
  • Krofta, (2022), Radiocarbon, 65, pp. 275
  • Schiffer, (1986), J. Archaeol. Sci., 13, pp. 13, 10.1016/0305-4403(86)90024-5
  • Berger, (1992), Radiocarbon, 34, pp. 880, 10.1017/S0033822200064201
  • Berger, R. (1995). Proceedings of the Royal Irish Academy. Section C: Archaeology, Celtic Studies, History, Linguistics, Literature, Royal Irish Academy.
  • Marzaioli, (2011), Anal. Chem., 83, pp. 2038, 10.1021/ac1027462
  • Lindroos, (2007), Radiocarbon, 49, pp. 47, 10.1017/S0033822200041898
  • Ortega, (2012), Radiocarbon, 54, pp. 23, 10.2458/azu_js_rc.v54i1.11988
  • Ponce-Antón, G., Ortega, L.A., Zuluaga, M.C., Alonso-Olazabal, A., and Solaun, J.L. (2018). Hydrotalcite and hydrocalumite in mortar binders from the medieval castle of portilla (Álava, North Spain): Accurate mineralogical control to achieve more reliable chronological ages. Minerals, 8.
  • Pesce, (2009), Radiocarbon, 51, pp. 867, 10.1017/S0033822200056174
  • Hajdas, (2017), Radiocarbon, 59, pp. 1845, 10.1017/RDC.2017.112
  • Addis, (2019), Radiocarbon, 61, pp. 375, 10.1017/RDC.2018.147
  • Mook, W., and Waterbolk, H. (1987). Proceedings of the 2nd Symposium of 14C & Archaeology, European Science Foundation (ESF).
  • Caroselli, (2023), Radiocarbon, 2023, pp. 1, 10.1017/RDC.2023.107
  • Ricci, (2022), Sci. Rep., 12, pp. 3339, 10.1038/s41598-022-07406-x
  • Marzaioli, (2013), Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 294, pp. 246, 10.1016/j.nimb.2012.09.006
  • Folk, (1976), J. Field Archaeol., 3, pp. 203, 10.2307/529387
  • Nawrocka, (2009), Radiocarbon, 51, pp. 857, 10.1017/S0033822200056162
  • Heinemeier, (2010), Radiocarbon, 52, pp. 171, 10.1017/S0033822200045124
  • Folk, (1951), J. Sediment. Res., 21, pp. 32
  • (2016), Constr. Build. Mater., 120, pp. 617, 10.1016/j.conbuildmat.2016.05.133
  • Schueremans, (2011), Constr. Build. Mater., 25, pp. 4338, 10.1016/j.conbuildmat.2011.01.008
  • (2011). Conservation of Cultural Property. Test Methods (Standard No. UNE-EN 15886:2011).
  • Sadezky, (2005), Carbon, 43, pp. 1731, 10.1016/j.carbon.2005.02.018
  • Pawlyta, (2015), Carbon, 84, pp. 479, 10.1016/j.carbon.2014.12.030
  • Bernard, (2023), RILEM Tech. Lett., 8, pp. 65, 10.21809/rilemtechlett.2023.177
  • Dilaria, S., Secco, M., Bonetto, J., Ricci, G., and Artioli, G. (2023). Conservation and Restoration of Historic Mortars and Masonry Structures, Springer.
  • Papayianni, (2006), Constr. Build. Mater., 20, pp. 700, 10.1016/j.conbuildmat.2005.02.012
  • Groot, (2004), Characterisation of Old Mortars with Respect to their Repair, Volume 28, pp. 77
  • Ponce-Antón, G., Zuluaga, M.C., Ortega, L.A., and Agirre Mauleon, J. (2020). Petrographic and Chemical–Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain). Minerals, 10.
  • Shafer, J., and Hilsdorf, H. (July, January 29). Ancient and new lime mortars—The correlation between their composition, structure and mechanical properties. Proceedings of the International Congress on Conservation of Stone and Other Materials, E & FN Spon, Paris, France.
  • Papayianni, I., and Stefanidou, M. (2001, January 4–7). The evolution of porosity in lime based mortars. Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials, Athens, Greece.
  • Silva, (2014), Appl. Clay Sci., 88–89, pp. 49, 10.1016/j.clay.2013.12.016
  • Bernard, (2018), Appl. Geochem., 89, pp. 229, 10.1016/j.apgeochem.2017.12.005
  • Nawrocka, (2005), Geochronometria, 24, pp. 109