Influence of thermal distortion on load distribution, transmission error and premature contact
- A. Arana 1
- A. Iñurritegui 1
- J. Larrañaga 1
- I. Ulacia 1
- 1 Mechanical and Manufacturing Department, Mondragon Unibertsitatea, Spain
Year of publication: 2018
Pages: 13
Type: Conference paper
Abstract
The influence of thermally-induced geometry distortions on representative gear parameters such as load distribution or transmission error is analysed. An analytical load distribution model is coupled to a thermal lumped-parameter network to compute temperature gradients in dip-lubricated cylindrical gears meshing with variable operating conditions and immersion depths. Geometry distortion is computed from steady-state temperature distribution and profile deviations are introduced back in the load distribution model to analyse its influence on parameters such as contact/root stresses or transmission error among others. The results are expected to give a first insight on the significance of thermal distortion on gear mesh.
Bibliographic References
- (1) W. P. Welch, J. F. Boron. Thermal instability in high speed gearing. Journal of the American Society for Naval Engineers, 72 (3) (1960), 471–486.
- (2) L. Martinaglia. Thermal behavior of high-speed gears and tooth correction for such gears. Mechanism and Machine Theory, 8 (3) (1973), 293 – 303.
- (3) M. Akazawa, T. Tejima, T. Narita. Full Scale Test of High Speed, High Powered Gear Unit- Helical Gears of 25,000 PS at 200 m/s PLV. ASME Paper No.80-C2/DET-4, 1980.
- (4) S. Matsumoto, Y. Tozaki, M. Fukutomi. Temperature distribution in teeth and blanks of ultra high-speed gears (1st report, measurement of temperature distribution in teeth and blanks). JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 44 (2001), 203 – 209.
- (5) J. Wang. Numerical and experimental analysis of spur gears in mesh. PhD dissertation. Curtin University of Technology, 2003.
- (6) S. Kashyap, D. R. Houser, Z. Smith, S. Selvaraj, J. M. Casella, and J. J. Bradway. Methods of describing plastic gear geometry after a temperature change with application to the prediction of gear load distribution. In Proc. of the ASME 2011 Design Engineering Technical Conference, Washington, 8 (2011), 497 – 505.
- (7) Y. Tozaki, S. Matsumoto, M. Fukutomi.. Temperature distribution in teeth and blanks of ultra-high-speed gears (2nd report, calculation of temperature distribution in teeth and blanks). JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 44 (2001), 210 – 216.
- (8) A. Arana, I. Ulacia, J. Larrañaga. Modelo térmico transitorio de engranajes cilíndricos en condiciones de lubricación mixta. In Proc. of the XXI Congreso Nacional de Ingeniería Mecánica (2016), Elche, Spain.
- (9) H. P. Otto, Flank Load Carrying Capacity and Power Loss Reduction by Minimised Lubrication. PhD dissertation. Technische Universität München, 2009.
- (10) J. Durand de Gevigney, C. Changenet, F. Ville, P. Velex. Thermal modelling of a backto-back gearbox test machine: Application to the FZG test rig. In Proc. of the IMechE Part J: Journal of Engineering Tribology, 226 (2012), 501-51.
- (11) T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. Dewitt. Introduction to heat transfer. 6th edition. John Wiley & Sons, Inc. 2012.
- (12) E. C. Cobb, O. A. Saunders. Heat Transfer from a Rotating Disk. In Proc. of the Royal Society, 236 (1956), 343-351.
- (13) D. Bartel. Simulation von Tribosystemen-Grundlagen und Anwendungen. 1st edition. Wiesbaden Vieweg+Teubner Verlag, 2010.
- (14) A. DeWinter, H. Blok. Fling-off cooling of gear teeth. ASME Journal of Engineering for Industry, 96 (1974), 60-70.
- (15) ISO/TR 14179-2:2001 (E). Gears-Thermal capacity: Part 2. Thermal load-carrying capacity. International standard, 2001.
- (16) W. A. Robin. Solving differential equations using modified Picard iteration. International Journal of Mathematical Education in Science and Technology, 41 (5) (2010), 649-665.
- (17) S. Wu, H. A. Cheng. A friction model of partial-EHL contacts and its application to power loss in spur gears. Tribology Transactions, 34 (1991), 398-407.
- (18) J. Archard. The temperature of rubbing surfaces Wear, 2 (1959), 438 – 455.
- (19) A. Arana, J. Larrañaga, I. Ulacia. Partial EHL friction coefficient model to predict power losses in cylindrical gears, In Proc. of the IMechE, Part C: Journal of Engineering Tribology, 2018, (in press).
- (20) T. Conry, A. A. Seireg. A Mathematical Programming Technique for the Evaluation of Load Distribution and Optimal Modifications for Gear Systems. ASME Journal of Engineering for Industry, 94 (1972), 1115-1122.
- (21) ISO 21771. Gears-Cylindrical involute gears and gear pairs-Concepts and geometry. International standard, 2007.
- (22) ISO 1328-1. Cylindrical gears – ISO system of flank tolerance classification-Part 1: Definitions and allowable values of deviations relevant to flank of gear teeth. International standard, 2013.