Hybrid AC/DC Microgrid Mode-Adaptive Controls

  1. Unamuno, Eneko
  2. Barrena, Jon Andoni
Libro:
Development and Integration of Microgrids

Editorial: IntechOpen ; Wenping Cao ; Jin Yang

ISBN: 978-953-51-3400-8 978-953-51-4709-1 978-953-51-3399-5

Año de publicación: 2017

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.69026 GOOGLE SCHOLAR lock_openAcceso abierto editor

Objetivos de desarrollo sostenible

Resumen

The lack of inertial response at microgrids is usually compensated by configuring primary controllers of converter‐interfaced devices to contribute in the transient response under power disturbances. The main purpose of this chapter is to study the modes of operation of primary level techniques of generation, storage, loads, and other devices attached to hybrid ac/dc microgrids. Although the chapter includes an analysis of the modes of operation of lower‐level regulators, the focus is on upper‐level or primary controllers. In this context, we analyze mode‐adaptive controls based on voltage and frequency levels and we evaluate their behavior by simulation in the Matlab/Simulink® environment. The results demonstrate that mode‐adaptive techniques are adequate for maximizing the energy extracted by distributed generation (DG) systems and limit demand side management actuations while ensuring an adequate regulation of the microgrid.

Referencias bibliográficas

  • Nordman B, Christensen K, Meier A. Think globally, distribute power locally: The promise of nanogrids. Computer (Long Beach Calif). 2012;45:89-91. doi:10.1109/MC.2012.32
  • Farhangi H. The path of the smart grid. IEEE Power Energy Magazine. 2010;8:18-28. doi:10.1109/MPE.2009.934876
  • Unamuno E, Barrena JA. Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renewable and Sustainable Energy Review. 2015;52:1251-1259. doi:10.1016/j.rser.2015.07.194
  • Unamuno E, Barrena JA. Hybrid ac/dc microgrids—Part II: Review and classification of control strategies. Renewable and Sustainable Energy Review. 2015;52:1123-1134. doi:10.1016/j.rser.2015.07.186
  • Unamuno E, Barrena JA. Primary control operation modes in islanded hybrid ac/dc microgrids. Proceedings of EUROCON 2015, Salamanca: IEEE; 2015, pp. 1-6. doi:10.1109/EUROCON.2015.7313681
  • Ulbig A, Rinke T, Chatzivasileiadis S, Andersson G. Predictive control for real‐time frequency regulation and rotational inertia provision in power systems. 52nd IEEE Conference on Decision and Control, IEEE; 2013, pp. 2946-53. doi:10.1109/CDC.2013.6760331
  • Vandoorn TL, Vasquez JC, De Kooning J, Guerrero JM, Vandevelde L. Microgrids: Hierarchical control and an overview of the control and reserve management strategies. IEEE Industrial Electronics Magazine. 2013;7:42-55. doi:10.1109/MIE.2013.2279306
  • Natarajan V, Weiss G. Synchronverters with better stability due to virtual inductors, virtual capacitors and anti‐windup. IEEE Transactions of Industrial Electronics. 2017;46:1-1. doi:10.1109/TIE.2017.2674611
  • Zhong Q‐C. Power electronics‐enabled autonomous power systems: Architecture and technical routes. IEEE Transactions of Industrial Electronics. 2017;46:1-1. doi:10.1109/TIE.2017.2677339
  • Chen D, Xu Y, Huang AQ. Integration of DC microgrids as virtual synchronous machines into the AC Grid. IEEE Transactions of Industrial Electronics. 2017;46:1-1. doi:10.1109/TIE.2017.267462
  • Wu H, Ruan X, Yang D, Chen X, Zhao W, Lv Z, et al. Small‐signal modeling and parameters design for virtual synchronous generators. IEEE Transactions of Industrial Electronics. 2016;63:4292-4303. doi:10.1109/TIE.2016.2543181
  • Suul JA, DArco S, Guidi G. Virtual synchronous machine‐based control of a single‐phase bi‐directional battery charger for providing vehicle‐to‐grid services. IEEE Transactions of Industrial Application. 2016;52:3234-3244. doi:10.1109/TIA.2016.2550588
  • Zhong Q‐C. Virtual synchronous machines: A unified interface for grid integration. IEEE Power Electronics Magazine. 2016;3:18-27. doi:10.1109/MPEL.2016.2614906
  • D’Arco S, Suul JA, Fosso OB. Small‐signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation. International Journal of Electronics Power Energy System. 2015;72:3-15. doi:10.1016/j.ijepes.2015.02.005
  • Zhong QC, Nguyen PL, Ma Z, Sheng W. Self‐synchronized synchronverters: Inverters without a dedicated synchronization unit. IEEE Transactions of Power Electronics. 2014;29:617-630. doi:10.1109/TPEL.2013.2258684
  • Unamuno E, Barrena J. Equivalence of primary control strategies for AC and DC microgrids. Energies. 2017;10:91. doi:10.3390/en10010091
  • Liu Y, Hou X, Wang X, Lin C, Guerrero J. A coordinated control for photovoltaic generators and energy storages in low‐voltage AC/DC hybrid microgrids under Islanded mode. Energies. 2016;9:651. doi:10.3390/en9080651
  • Gu Y, Li W, He X. Frequency‐coordinating virtual impedance for autonomous power management of DC microgrid. IEEE Transactions of Power Electronics. 2015;30:2328-2337. doi:10.1109/TPEL.2014.2325856
  • Loh PC, Li D, Chai YK, Blaabjerg F. Hybrid AC‐DC microgrids with energy storages and progressive energy flow tuning. Proceedings of 7th International Power Electronics Motion Control Conference, IEEE; 2012, pp. 120-127. doi:10.1109/IPEMC.2012.6258872
  • Gu Y, Xiang X, Li W, He X. Mode‐adaptive decentralized control for renewable DC microgrid with enhanced reliability and flexibility. IEEE Transactions of Power Electronics. 2014;29:5072-5080. doi:10.1109/TPEL.2013.2294204
  • Peyghami‐Akhuleh S, Mokhtari H, Davari P, Loh PC, Blaabjerg F. Smart power management of DC microgrids in future milligrids. 2016 18th European Conference on Power Electronics and Applications. EPE’16 ECCE Eur., IEEE; 2016, pp. 1-10. doi:10.1109/EPE.2016.7695459
  • Loh PC, Li D, Chai YK, Blaabjerg F. Autonomous operation of hybrid microgrid with ac and dc subgrids. IEEE Transactions of Power Electronics. 2013;28:2214-2223. doi:10.1109/TPEL.2012.2214792
  • Palensky P, Dietrich D. Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Transactions of Industrial Informatics. 2011;7:381-388. doi:10.1109/TII.2011.2158841
  • Baharizadeh M, Karshenas HR, Guerrero JM. Control strategy of interlinking converters as the key segment of hybrid AC‐DC Microgrids. IET Generation, Transmission & Distribution. 2016;10:1671-1681. doi:10.1049/iet‐gtd.2015.1014