Design and Fabrication of Wearable Biosensors: Materials, Methods, and Prospects

  1. Reddy Gajjala, Rajendra Kumar
  2. Muñana-González, Sara
  3. Núñez-Marinero, Pello
  4. Totoricaguena-Gorriño, Joseba
  5. Ruiz-Rubio, Leire
  6. Javier del Campo, Francisco
Libro:
Wearable Biosensing in Medicine and Healthcare

ISBN: 9789819981212 9789819981229

Año de publicación: 2024

Páginas: 317-378

Tipo: Capítulo de Libro

DOI: 10.1007/978-981-99-8122-9_15 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Land, K.J., Boeras, D.I., Chen, X.-S., Ramsay, A.R., Peeling, R.W.: REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4, 46–54 (2019). https://doi.org/10.1038/s41564-018-0295-3
  • Mabey, D., Peeling, R.W., Ustianowski, A., Perkins, M.D.: Diagnostics for the developing world. Nat. Rev. Microbiol. 2, 231–240 (2004). https://doi.org/10.1038/nrmicro841
  • Tierney, M.J., Tamada, J.A., Potts, R.O., Jovanovic, L., Garg, S.: Clinical evaluation of the GlucoWatch® biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 16, 621–629 (2001). https://doi.org/10.1016/S0956-5663(01)00189-0
  • Tierney, M.J., Tamada, J.A., Potts, R.O., Eastman, R.C., Pitzer, K., Ackerman, N.R., Fermi, S.J.: The GlucoWatch ® biographer: a frequent, automatic and noninvasive glucose monitor. Ann. Med. 32, 632–641 (2000). https://doi.org/10.3109/07853890009002034
  • Ellis, S., Naik, R., Gemperline, K., Garg, S.: Use of Continuous Glucose Monitoring in Patients with Type 1 Diabetes. Curr. Diabetes Rev. 4, 207–217 (2008). https://doi.org/10.2174/157339908785294370
  • Christiansen, M., Bailey, T., Watkins, E., Liljenquist, D., Price, D., Nakamura, K., Boock, R., Peyser, T.: A New-Generation Continuous Glucose Monitoring System: Improved Accuracy and Reliability Compared with a Previous-Generation System. Diabetes Technol. Ther. 15, 881–888 (2013). https://doi.org/10.1089/dia.2013.0077
  • Garcia, A., Rack-Gomer, A.L., Bhavaraju, N.C., Hampapuram, H., Kamath, A., Peyser, T., Facchinetti, A., Zecchin, C., Sparacino, G., Cobelli, C.: Dexcom G4AP: An Advanced Continuous Glucose Monitor for the Artificial Pancreas. J. Diabetes Sci. Technol. 7, 1436–1445 (2013). https://doi.org/10.1177/193229681300700604
  • Kropff, J., Choudhary, P., Neupane, S., Barnard, K., Bain, S.C., Kapitza, C., Forst, T., Link, M., Dehennis, A., DeVries, J.H.: Accuracy and Longevity of an Implantable Continuous Glucose Sensor in the PRECISE Study: A 180-Day, Prospective, Multicenter. Pivotal Trial. Diabetes Care. 40, 63–68 (2017). https://doi.org/10.2337/dc16-1525
  • Laffel, L.M., Aleppo, G., Buckingham, B.A., Forlenza, G.P., Rasbach, L.E., Tsalikian, E., Weinzimer, S.A., Harris, D.R.: A Practical Approach to Using Trend Arrows on the Dexcom G5 CGM System to Manage Children and Adolescents With Diabetes. J. Endocr. Soc. 1, 1461–1476 (2017). https://doi.org/10.1210/js.2017-00389
  • Aleppo, G., Laffel, L.M., Ahmann, A.J., Hirsch, I.B., Kruger, D.F., Peters, A., Weinstock, R.S., Harris, D.R.: A Practical Approach to Using Trend Arrows on the Dexcom G5 CGM System for the Management of Adults With Diabetes. J. Endocr. Soc. 1, 1445–1460 (2017). https://doi.org/10.1210/js.2017-00388
  • Yeoh, E., Png, D., Khoo, J., Chee, Y.J., Sharda, P., Low, S., Lim, S.C., Subramaniam, T.: A head‐to‐head comparison between Guardian Connect and FreeStyle Libre systems and an evaluation of user acceptability of sensors in patients with type 1 diabetes. Diabetes Metab. Res. Rev. 38, (2022). https://doi.org/10.1002/dmrr.3560
  • Guillot, F.H., Jacobs, P.G., Wilson, L.M., Youssef, J.E., Gabo, V.B., Branigan, D.L., Tyler, N.S., Ramsey, K., Riddell, M.C., Castle, J.R.: Accuracy of the Dexcom G6 Glucose Sensor during Aerobic, Resistance, and Interval Exercise in Adults with Type 1 Diabetes. Biosensors 10, 138 (2020). https://doi.org/10.3390/bios10100138
  • Davis, G.M., Spanakis, E.K., Migdal, A.L., Singh, L.G., Albury, B., Urrutia, M.A., Zamudio-Coronado, K.W., Scott, W.H., Doerfler, R., Lizama, S., Satyarengga, M., Munir, K., Galindo, R.J., Vellanki, P., Cardona, S., Pasquel, F.J., Peng, L., Umpierrez, G.E.: Accuracy of Dexcom G6 Continuous Glucose Monitoring in Non-Critically Ill Hospitalized Patients With Diabetes. Diabetes Care 44, 1641–1646 (2021). https://doi.org/10.2337/dc20-2856
  • Joseph, J.I.: Review of the Long-Term Implantable Senseonics Continuous Glucose Monitoring System and Other Continuous Glucose Monitoring Systems. J. Diabetes Sci. Technol. 15, 167–173 (2021). https://doi.org/10.1177/1932296820911919
  • Abbot: Perform Stronger and Recover Faster with CGM, https://www.supersapiens.com
  • Brady, S., Dunne, L.E.E., Lynch, A., Smyth, B., Diamond, D.: Wearable sensors? what is there to sense? IOS Press, Adaptive Information Cluster, National Centre for Sensor Research, Dublin City University, Ireland (2005)
  • Coyle, S., Morris, D., Lau, K.-T., Diamond, D., Moyna, N.: Textile-based wearable sensors for assisting sports performance. Presented at the , Clarity: The Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland (2009)
  • Coyle, S., Diamond, D.: Medical applications of smart textiles. In: Multidisciplinary Know-How for Smart-Textiles Developers. pp. 420–443. Elsevier Ltd, CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland (2013)
  • Morris, D., Coyle, S., Wu, Y., Lau, K.T., Wallace, G., Diamond, D.: Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens. Actuators B Chem. 139, 231–236 (2009). https://doi.org/10.1016/j.snb.2009.02.032
  • Glennon, T., O’Quigley, C., McCaul, M., Matzeu, G., Beirne, S., Wallace, G.G.G., Stroiescu, F., O’Mahoney, N., White, P., Diamond, D.: ‘SWEATCH’: A Wearable Platform for Harvesting and Analysing Sweat Sodium Content. Electroanalysis 28, 1283–1289 (2016). https://doi.org/10.1002/elan.201600106
  • Windmiller, J.R., Bandodkar, A.J., Valdés-Ramírez, G., Parkhomovsky, S., Martinez, A.G., Wang, J.: Electrochemical sensing based on printable temporary transfer tattoos. Chem. Commun. 48, 6794 (2012). https://doi.org/10.1039/c2cc32839a
  • Bandodkar, A.J., Jia, W., Wang, J.: Tattoo-Based Wearable Electrochemical Devices: A Review. Electroanalysis 27, 562–572 (2015). https://doi.org/10.1002/elan.201400537
  • Wang, J., Windmiller, J.R., Jia, W.: Printed biofuel cells, (2012)
  • Jia, W., Valdés-Ramírez, G., Bandodkar, A.J., Windmiller, J.R., Wang, J.: Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem. - Int. Ed. 52, 7233–7236 (2013). https://doi.org/10.1002/anie.201302922
  • Kim, J., Valdés-Ramírez, G., Bandodkar, A.J., Jia, W., Martinez, A.G., Ramírez, J., Mercier, P., Wang, J.: Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014). https://doi.org/10.1039/c3an02359a
  • Rose, D., Ratterman, M., Griffin, D., Hou, L., Kelley-Loughnane, N., Naik, R., Hagen, J., Papautsky, I., Heikenfeld, J.: Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes. IEEE Trans. Biomed. Eng. 9294, 1–1 (2014). https://doi.org/10.1109/TBME.2014.2369991
  • Hou, L., Hagen, J., Wang, X., Papautsky, I., Naik, R., Kelley-Loughnane, N., Heikenfeld, J.: Artificial microfluidic skin for in vitro perspiration simulation and testing. Lab Chip 13, 1868 (2013). https://doi.org/10.1039/c3lc41231h
  • La Count, T.D., Jajack, A., Heikenfeld, J., Kasting, G.B.: Modeling Glucose Transport From Systemic Circulation to Sweat. J. Pharm. Sci. 108, 364–371 (2019). https://doi.org/10.1016/j.xphs.2018.09.026
  • Zhao, F.J.J., Bonmarin, M., Chen, Z.C.C., Larson, M., Fay, D., Runnoe, D., Heikenfeld, J.: Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20, 168–174 (2020). https://doi.org/10.1039/c9lc00911f
  • Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F.G., Huang, Y., Coleman, T., Rogers, J.A.: Epidermal Electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
  • Kim, J.U., Seo, S.G., Rogers, J.A.: Compound semiconductor devices for the skin. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01441-9
  • Reeder, J.T., Choi, J., Xue, Y., Gutruf, P., Hanson, J., Liu, M., Ray, T., Bandodkar, A.J., Avila, R., Xia, W., Krishnan, S., Xu, S., Barnes, K., Pahnke, M., Ghaffari, R., Huang, Y., Rogers, J.A.: Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv. 5, eaau6356 (2019). https://doi.org/10.1126/sciadv.aau6356
  • Bandodkar, A.J.J., Lee, S.P.P., Huang, I., Li, W., Wang, S., Su, C.-J., Jeang, W.J.J., Hang, T., Mehta, S., Nyberg, N., Gutruf, P., Choi, J., Koo, J., Reeder, J.T., Tseng, R., Ghaffari, R., Rogers, J.A.A.: Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat. Electron. 3, 554–562 (2020). https://doi.org/10.1038/s41928-020-0443-7
  • Baker, L.B., Model, J.B., Barnes, K.A., Anderson, M.L., Lee, S.P., Lee, K.A., Brown, S.D., Reimel, A.J., Roberts, T.J., Nuccio, R.P., Bonsignore, J.L., Ungaro, C.T., Carter, J.M., Li, W., Seib, M.S., Reeder, J.T., Aranyosi, A.J., Rogers, J.A., Ghaffari, R.: Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2020). https://doi.org/10.1126/sciadv.abe3929
  • Liu, S., Yang, D.S., Wang, S., Luan, H., Sekine, Y., Model, J.B., Aranyosi, A.J., Ghaffari, R., Rogers, J.A.: Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers. EcoMat. 5, (2023). https://doi.org/10.1002/eom2.12270
  • Kwon, K., Kim, J.U., Deng, Y., Krishnan, S.R., Choi, J., Jang, H., Lee, K., Su, C.-J., Yoo, I., Wu, Y., Lipschultz, L., Kim, J.-H., Chung, T.S., Wu, D., Park, Y., Kim, T., Ghaffari, R., Lee, S., Huang, Y., Rogers, J.A.: An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021). https://doi.org/10.1038/s41928-021-00556-2
  • Drucker, P.F.: Innovation and entrepreneurship: practice and principles. HarperBusiness, New York, NY (2006)
  • Christensen, C.M.: The innovator’s dilemma: the revolutionary book that will change the way you do business ; [with a new preface]. Harper Business, New York, NY (2011)
  • Porter, M.E.: Competitive strategy: techniques for analyzing industries and competitors. Free Press, New York London Toronto Sydney (2004)
  • Porter, M.E.: Competitive advantage: creating and sustaining superior performance. Free Press, New York, NY (2004)
  • Norman, D.A.: The design of everyday things. Tantor Media Inc., Old Saybrook, Ct (2011)
  • Lefteri, C.: Making It: Manufacturing techniques for product design. Laurence King Publishing, London (2019)
  • Sui, X., Downing, J.R., Hersam, M.C., Chen, J.: Additive manufacturing and applications of nanomaterial-based sensors. Mater. Today 48, 135–154 (2021). https://doi.org/10.1016/j.mattod.2021.02.001
  • Santiago-Malagón, S., Río-Colín, D., Azizkhani, H., Aller-Pellitero, M., Guirado, G., del Campo, F.J.: A self-powered skin-patch electrochromic biosensor. Biosens. Bioelectron. 175, 112879 (2021). https://doi.org/10.1016/j.bios.2020.112879
  • Wang, Z., Gui, M., Asif, M., Yu, Y., Dong, S., Wang, H., Wang, W., Wang, F., Xiao, F., Liu, H.: A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale 10, 6629–6638 (2018). https://doi.org/10.1039/C8NR00798E
  • Cheng, Y.-T., Chen, L.-C., Wang, W.-C.: Development of a fiber shape polymeric humidity sensor. Presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring , Portland, Oregon, United States April 17 (2017)
  • Veeralingam, S., Khandelwal, S., Badhulika, S.: AI/ML-Enabled 2-D - RuS 2 Nanomaterial-Based Multifunctional, Low Cost, Wearable Sensor Platform for Non-Invasive Point of Care Diagnostics. IEEE Sens. J. 20, 8437–8444 (2020). https://doi.org/10.1109/JSEN.2020.2984807
  • Jiang, D., Xu, C., Zhang, Q., Ye, Y., Cai, Y., Li, K., Li, Y., Huang, X., Wang, Y.: In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat. Biosens. Bioelectron. 210, 114303 (2022). https://doi.org/10.1016/j.bios.2022.114303
  • Asaduzzaman, M., Zahed, M.A., Sharifuzzaman, M., Reza, M.S., Hui, X., Sharma, S., Shin, Y.D., Park, J.Y.: A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosens. Bioelectron. 219, 114846 (2023). https://doi.org/10.1016/j.bios.2022.114846
  • Zahid, M., Papadopoulou, E.L., Athanassiou, A., Bayer, I.S.: Strain-responsive mercerized conductive cotton fabrics based on PEDOT:PSS/graphene. Mater. Des. 135, 213–222 (2017). https://doi.org/10.1016/j.matdes.2017.09.026
  • Fisher, C., Skolrood, L.N., Li, K., Joshi, P.C., Aytug, T.: Aerosol-Jet Printed Sensors for Environmental, Safety, and Health Monitoring: A Review. Adv. Mater. Technol. n/a, 2300030. https://doi.org/10.1002/admt.202300030
  • Veenuttranon, K., Kaewpradub, K., Jeerapan, I.: Screen-Printable Functional Nanomaterials for Flexible and Wearable Single-Enzyme-Based Energy-Harvesting and Self-Powered Biosensing Devices. Nano-Micro Lett. 15, 85 (2023). https://doi.org/10.1007/s40820-023-01045-1
  • Smith, A.A., Li, R., Tse, Z.T.H.: Reshaping healthcare with wearable biosensors. Sci. Rep. 13, 4998 (2023). https://doi.org/10.1038/s41598-022-26951-z
  • Kalkal, A., Kumar, S., Kumar, P., Pradhan, R., Willander, M., Packirisamy, G., Kumar, S., Malhotra, B.D.: Recent advances in 3D printing technologies for wearable (bio)sensors. Addit. Manuf. 46, 102088 (2021). https://doi.org/10.1016/j.addma.2021.102088
  • Muth, J.T., Vogt, D.M., Truby, R.L., Mengüç, Y., Kolesky, D.B., Wood, R.J., Lewis, J.A.: Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Adv. Mater. 26, 6307–6312 (2014). https://doi.org/10.1002/adma.201400334
  • Yi, Q., Najafikhoshnoo, S., Das, P., Noh, S., Hoang, E., Kim, T., Esfandyarpour, R.: All-3D-Printed, Flexible, and Hybrid Wearable Bioelectronic Tactile Sensors Using Biocompatible Nanocomposites for Health Monitoring. Adv. Mater. Technol. 7, 2101034 (2022). https://doi.org/10.1002/admt.202101034
  • Zhou, L., Gao, Q., Fu, J., Chen, Q., Zhu, J., Sun, Y., He, Y.: Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS Appl. Mater. Interfaces 11, 23573–23583 (2019). https://doi.org/10.1021/acsami.9b04873
  • Kim, T., Yi, Q., Hoang, E., Esfandyarpour, R.: A 3D Printed Wearable Bioelectronic Patch for Multi-Sensing and In Situ Sweat Electrolyte Monitoring. Adv. Mater. Technol. 6, 2001021 (2021). https://doi.org/10.1002/admt.202001021
  • Xin, M., Li, J., Ma, Z., Pan, L., Shi, Y.: MXenes and Their Applications in Wearable Sensors. Front. Chem. 8, 297 (2020). https://doi.org/10.3389/fchem.2020.00297
  • Bhardwaj, S.K., Singh, H., Khatri, M., Kim, K.-H., Bhardwaj, N.: Advances in MXenes-based optical biosensors: A review. Biosens. Bioelectron. 202, 113995 (2022). https://doi.org/10.1016/j.bios.2022.113995
  • Hondred, J.A., Johnson, Z.T., Claussen, J.C.: Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. J. Mater. Chem. C. 8, 11376–11388 (2020). https://doi.org/10.1039/D0TC01423K
  • Wang, C., Zhu, S., Liang, Y., Cui, Z., Wu, S., Qin, C., Luo, S., Inoue, A.: Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects. J. Mater. Sci. Technol. 53, 91–101 (2020). https://doi.org/10.1016/j.jmst.2020.04.010
  • Sánchez-Molas, D., Esquivel, J.P., Sabaté, N., Muñoz, F.X., del Campo, F.J., Esquivel, J.P.: High Aspect-Ratio, Fully Conducting Gold Micropillar Array Electrodes: Silicon Micromachining and Electrochemical Characterization. J. Phys. Chem. C 116, 18831–18846 (2012). https://doi.org/10.1021/jp305339k
  • Chyan, Y., Ye, R., Li, Y., Singh, S.P., Arnusch, C.J., Tour, J.M.: Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 12, 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
  • Fruncillo, S., Su, X., Liu, H., Wong, L.S.: Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens. 6, 2002–2024 (2021). https://doi.org/10.1021/acssensors.0c02704
  • Cao, R., Pu, X., Du, X., Yang, W., Wang, J., Guo, H., Zhao, S., Yuan, Z., Zhang, C., Li, C., Lin Wang, Z.: Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human−Machine Interaction Article. ACS Nano 12, 38 (2018). https://doi.org/10.1021/acsnano.8b02477
  • Ma, D., Chon, S., Cho, S., Lee, Y., Yoo, M., Kim, D., Lee, D.Y., Lim, J.K.: A novel photolithographic method for fabrication of flexible micro-patterned glucose sensors. J. Electroanal. Chem. 876, 114720 (2020). https://doi.org/10.1016/j.jelechem.2020.114720
  • Oppel, E., Högg, C., Oschmann, A., Summer, B., Kamann, S.: Contact allergy to the Dexcom G6 glucose monitoring system—Role of 2,2′-methylenebis(6-tert-butyl-4-methylphenol) monoacrylate in the new adhesive. Contact Dermatitis 87, 258–264 (2022). https://doi.org/10.1111/cod.14141
  • Jones, P., Wynn, M., Hillier, D., Comfort, D.: The Sustainable Development Goals and Information and Communication Technologies. Indones. J. Sustain. Account. Manag. 1, 1 (2017). https://doi.org/10.28992/ijsam.v1i1.22
  • Poitout, V., Moatti-Sirat, D., Reach, G., Zhang, Y., Wilson, G.S., Lemonnier, F., Klein, J.C.: A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36, 658–663 (1993). https://doi.org/10.1007/BF00404077
  • Kudo, H., Sawada, T., Kazawa, E., Yoshida, H., Iwasaki, Y., Mitsubayashi, K.: A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens. Bioelectron. 22, 558–562 (2006). https://doi.org/10.1016/j.bios.2006.05.006
  • Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767
  • Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.-H., Brooks, G.A., Davis, R.W., Javey, A.: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521
  • Huang, X., Liu, Y., Zhou, J., Nejad, S.K., Wong, T.H., Huang, Y., Li, H., Yiu, C.K., Park, W., Li, J., Su, J., Zhao, L., Yao, K., Wu, M., Gao, Z., Li, D., Li, J., Shi, R., Yu, X.: Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. Npj Flex. Electron. 6, 10 (2022). https://doi.org/10.1038/s41528-022-00144-0
  • Rasitanon, N., Ittisoponpisan, S., Kaewpradub, K., Jeerapan, I.: Wearable Electrodes for Lactate: Applications in Enzyme-Based Sensors and Energy Biodevices. Anal. Sens. (2023). https://doi.org/10.1002/anse.202200066
  • Sadani, K., Nag, P., Thian, X.Y., Mukherji, S.: Enzymatic optical biosensors for healthcare applications. Biosens. Bioelectron. X. 12, 100278 (2022). https://doi.org/10.1016/j.biosx.2022.100278
  • Heikenfeld, J., Jajack, A., Feldman, B., Granger, S.W., Gaitonde, S., Begtrup, G., Katchman, B.A.: Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3
  • Zafar, H., Channa, A., Jeoti, V., Stojanović, G.M.: Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors. 22, 638 (2022). https://doi.org/10.3390/s22020638
  • Chung, M., Fortunato, G., Radacsi, N.: Wearable flexible sweat sensors for healthcare monitoring: a review. J. R. Soc. Interface. 16, 20190217 (2019). https://doi.org/10.1098/rsif.2019.0217
  • Bucur, B., Purcarea, C., Andreescu, S., Vasilescu, A.: Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors. 21, 3038 (2021). https://doi.org/10.3390/s21093038
  • Lipińska, W., Grochowska, K., Siuzdak, K.: Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. Nanomaterials 11, 1156 (2021). https://doi.org/10.3390/nano11051156
  • Cabaj, J., Sołoducho, J.: Nano-Sized Elements in Electrochemical Biosensors. Mater. Sci. Appl. 05, 752–766 (2014). https://doi.org/10.4236/msa.2014.510076
  • Skaria, E., Patel, B.A., Flint, M.S., Ng, K.W.: Poly(lactic acid)/Carbon Nanotube Composite Microneedle Arrays for Dermal Biosensing. Anal. Chem. 91, 4436–4443 (2019). https://doi.org/10.1021/acs.analchem.8b04980
  • Lawal, A.T.: Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater. Res. Bull. 73, 308–350 (2016). https://doi.org/10.1016/j.materresbull.2015.08.037
  • Niu, Y., Liu, J., Chen, W., Yin, C., Weng, W., Li, X., Wang, X., Li, G., Sun, W.: A direct electron transfer biosensor based on a horseradish peroxidase and gold nanotriangle modified electrode and electrocatalysis. Anal. Methods 10, 5297–5304 (2018). https://doi.org/10.1039/C8AY01980K
  • Fang, L., Liu, B., Liu, L., Li, Y., Huang, K., Zhang, Q.: Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sens. Actuators B Chem. 222, 1096–1102 (2016). https://doi.org/10.1016/j.snb.2015.08.032
  • Holzinger, M., Baur, J., Haddad, R., Wang, X., Cosnier, S.: Multiple functionalization of single-walled carbon nanotubes by dip coating. Chem. Commun. 47, 2450–2452 (2011). https://doi.org/10.1039/C0CC03928D
  • Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic, Martinkova, P.: Main streams in the Construction of Biosensors and Their Applications. Int. J. Electrochem. Sci. 7386–7403 (2017). https://doi.org/10.20964/2017.08.02
  • Nguyen, H.H., Lee, S.H., Lee, U.J., Fermin, C.D., Kim, M.: Immobilized Enzymes in Biosensor Applications. Materials. 12, 121 (2019). https://doi.org/10.3390/ma12010121
  • Sassolas, A., Blum, L.J., Leca-Bouvier, B.D.: Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489–511 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.003
  • Salazar, P., Martín, M., O’Neill, R.D., González-Mora, J.L.: Glutamate microbiosensors based on Prussian Blue modified carbon fiber electrodes for neuroscience applications: In-vitro characterization. Sens. Actuators B Chem. 235, 117–125 (2016). https://doi.org/10.1016/j.snb.2016.05.057
  • Kim, J., Imani, S., de Araujo, W.R., Warchall, J., Valdés-Ramírez, G., Paixão, T.R.L.C., Mercier, P.P., Wang, J.: Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015). https://doi.org/10.1016/j.bios.2015.07.039
  • Tur-García, E.L., Davis, F., Collyer, S.D., Holmes, J.L., Barr, H., Higson, S.P.J.: Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat. Sens. Actuators B Chem. 242, 502–510 (2017). https://doi.org/10.1016/j.snb.2016.11.040
  • Clark, L.C., Lyons, C.: ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Ann. N. Y. Acad. Sci. 102, 29–45 (2006). https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
  • Jiang, Y., Yang, Y., Shen, L., Ma, J., Ma, H., Zhu, N.: Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal. Chem. 94, 297–311 (2022). https://doi.org/10.1021/acs.analchem.1c04420
  • Herrmann, A., Haag, R., Schedler, U.: Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 10, 2100062 (2021). https://doi.org/10.1002/adhm.202100062
  • Lipińska, W., Siuzdak, K., Karczewski, J., Dołęga, A., Grochowska, K.: Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sens. Actuators B Chem. 330, 129409 (2021). https://doi.org/10.1016/j.snb.2020.129409
  • Updike, S.J., Hicks, G.P.: The Enzyme Electrode. Nature 214, 986–988 (1967). https://doi.org/10.1038/214986a0
  • Kim, G.J., Kim, K.O.: Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 10, 18858 (2020). https://doi.org/10.1038/s41598-020-75906-9
  • Kim, J., Jeerapan, I., Imani, S., Cho, T.N., Bandodkar, A., Cinti, S., Mercier, P.P., Wang, J.: Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 1, 1011–1019 (2016). https://doi.org/10.1021/acssensors.6b00356
  • Kemp, E., Palomäki, T., Ruuth, I.A., Boeva, Z.A., Nurminen, T.A., Vänskä, R.T., Zschaechner, L.K., Pérez, A.G., Hakala, T.A., Wardale, M., Haeggström, E., Bobacka, J.: Influence of enzyme immobilization and skin-sensor interface on non-invasive glucose determination from interstitial fluid obtained by magnetohydrodynamic extraction. Biosens. Bioelectron. 206, 114123 (2022). https://doi.org/10.1016/j.bios.2022.114123
  • Nagamine, K., Mano, T., Nomura, A., Ichimura, Y., Izawa, R., Furusawa, H., Matsui, H., Kumaki, D., Tokito, S.: Noninvasive Sweat-Lactate Biosensor Emplsoying a Hydrogel-Based Touch Pad. Sci. Rep. 9, 10102 (2019). https://doi.org/10.1038/s41598-019-46611-z
  • Liu, J., Zhang, L., Fu, C.: Os-complex-based amperometric bienzyme biosensor for continuous determination of lactate in saliva. Anal. Methods 7, 6158–6164 (2015). https://doi.org/10.1039/C5AY01110H
  • Mollarasouli, K.: Ozkan: The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors 9, 86 (2019). https://doi.org/10.3390/bios9030086
  • Ruiz, G., Tripathi, K., Okyem, S., Driskell, J.D.: PH Impacts the Orientation of Antibody Adsorbed onto Gold Nanoparticles. Bioconjug. Chem. 30, 1182–1191 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00123
  • Wei, J., Zhang, X., Mugo, S.M., Zhang, Q.: A Portable Sweat Sensor Based on Carbon Quantum Dots for Multiplex Detection of Cardiovascular Health Biomarkers. Anal. Chem. 94, 12772–12780 (2022). https://doi.org/10.1021/acs.analchem.2c02587
  • Haji-Hashemi, H., Norouzi, P., Safarnejad, M.R., Ganjali, M.R.: Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode. Sens. Actuators B Chem. 244, 211–216 (2017). https://doi.org/10.1016/j.snb.2016.12.135
  • Lee, H.-B., Meeseepong, M., Trung, T.Q., Kim, B.-Y., Lee, N.-E.: A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens. Bioelectron. 156, 112133 (2020). https://doi.org/10.1016/j.bios.2020.112133
  • Bagni, G., Osella, D., Sturchio, E., Mascini, M.: Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Instrum. Methods Anal. -IMA 2005(573–574), 81–89 (2006). https://doi.org/10.1016/j.aca.2006.03.085
  • Lymperopoulos, K., Crawford, R., Torella, J.P., Heilemann, M., Hwang, L.C., Holden, S.J., Kapanidis, A.N.: Single-Molecule DNA Biosensors for Protein and Ligand Detection. Angew. Chem. Int. Ed. 49, 1316–1320 (2010). https://doi.org/10.1002/anie.200904597
  • Choi, J.-H., Lim, J., Shin, M., Paek, S.-H., Choi, J.-W.: CRISPR-Cas12a-Based Nucleic Acid Amplification-Free DNA Biosensor via Au Nanoparticle-Assisted Metal-Enhanced Fluorescence and Colorimetric Analysis. Nano Lett. 21, 693–699 (2021). https://doi.org/10.1021/acs.nanolett.0c04303
  • Mukherjee, M., Gajjala, R.K.R., Gade, P.S., Bhatt, P.: 3.42 - Aptasensors: Paradigm Shift for Detection of Food Toxins. In: Knoerzer, K. and Muthukumarappan, K. (eds.) Innovative Food Processing Technologies. pp. 712–730. Elsevier, Oxford (2021)
  • Gao, Y., Nguyen, D.T., Yeo, T., Lim, S.B., Tan, W.X., Madden, L.E., Jin, L., Long, J.Y.K., Aloweni, F.A.B., Liew, Y.J.A., Tan, M.L.L., Ang, S.Y., Maniya, S.D., Abdelwahab, I., Loh, K.P., Chen, C.-H., Becker, D.L., Leavesley, D., Ho, J.S., Lim, C.T.: A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614. https://doi.org/10.1126/sciadv.abg9614
  • Ferguson, B.S., Hoggarth, D.A., Maliniak, D., Ploense, K., White, R.J., Woodward, N., Hsieh, K., Bonham, A.J., Eisenstein, M., Kippin, T.E., Plaxco, K.W., Soh, H.T.: Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Sci. Transl. Med. 5, 213ra165–213ra165 (2013). https://doi.org/10.1126/scitranslmed.3007095
  • Raju, K.S.R., Taneja, I., Singh, S.P.: Wahajuddin: Utility of noninvasive biomatrices in pharmacokinetic studies. Biomed. Chromatogr. 27, 1354–1366 (2013). https://doi.org/10.1002/bmc.2996
  • Tsunoda, M., Hirayama, M., Tsuda, T., Ohno, K.: Noninvasive monitoring of plasma l-dopa concentrations using sweat samples in Parkinson’s disease. Clin. Chim. Acta 442, 52–55 (2015). https://doi.org/10.1016/j.cca.2014.12.032
  • Tai, L.-C., Gao, W., Chao, M., Bariya, M., Ngo, Q.P., Shahpar, Z., Nyein, H.Y.Y., Park, H., Sun, J., Jung, Y., Wu, E., Fahad, H.M., Lien, D.-H., Ota, H., Cho, G., Javey, A.: Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Adv. Mater. 30, 1707442 (2018). https://doi.org/10.1002/adma.201707442
  • Gal, P.: Caffeine Therapeutic Drug Monitoring Is Necessary and Cost-effective. J. Pediatr. Pharmacol. Ther. 12, 212–215 (2007). https://doi.org/10.5863/1551-6776-12.4.212
  • Tai, L.-C., Liaw, T.S., Lin, Y., Nyein, H.Y.Y., Bariya, M., Ji, W., Hettick, M., Zhao, C., Zhao, J., Hou, L., Yuan, Z., Fan, Z., Javey, A.: Wearable Sweat Band for Noninvasive Levodopa Monitoring. Nano Lett. 19, 6346–6351 (2019). https://doi.org/10.1021/acs.nanolett.9b02478
  • Wu, Y., Tehrani, F., Teymourian, H., Mack, J., Shaver, A., Reynoso, M., Kavner, J., Huang, N., Furmidge, A., Duvvuri, A., Nie, Y., Laffel, L.M., Doyle, F.J.I., Patti, M.-E., Dassau, E., Wang, J., Arroyo-Currás, N.: Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Anal. Chem. 94, 8335–8345 (2022). https://doi.org/10.1021/acs.analchem.2c00829
  • Mousavisani, S.Z., Raoof, J.B., Ojani, R., Bagheryan, Z.: An impedimetric biosensor for DNA damage detection and study of the protective effect of deferoxamine against DNA damage. Bioelectrochemistry 122, 142–148 (2018). https://doi.org/10.1016/j.bioelechem.2018.03.012
  • Parab, H.J., Jung, C., Lee, J.-H., Park, H.G.: A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens. Bioelectron. 26, 667–673 (2010). https://doi.org/10.1016/j.bios.2010.06.067
  • Zhang, H., Wang, R., Tan, H., Nie, L., Yao, S.: Bovine serum albumin as a means to immobilize DNA on a silver-plated bulk acoustic wave DNA biosensor. Talanta 46, 171–178 (1998). https://doi.org/10.1016/S0039-9140(97)00271-3
  • Afzal, A., Mujahid, A., Schirhagl, R., Bajwa, S.Z., Latif, U., Feroz, S.: Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors. 5, 7 (2017)
  • Hu, L., Hu, S., Guo, L., Shen, C., Yang, M., Rasooly, A.: DNA Generated Electric Current Biosensor. Anal. Chem. 89, 2547–2552 (2017). https://doi.org/10.1021/acs.analchem.6b04756
  • Han, S., Liu, W., Zheng, M., Wang, R.: Label-Free and Ultrasensitive Electrochemical DNA Biosensor Based on Urchinlike Carbon Nanotube-Gold Nanoparticle Nanoclusters. Anal. Chem. 92, 4780–4787 (2020). https://doi.org/10.1021/acs.analchem.9b03520
  • Kim, E.R., Joe, C., Mitchell, R.J., Gu, M.B.: Biosensors for healthcare: Current and future perspectives. Trends Biotechnol. (2022)
  • Yang, B., Kong, J., Fang, X.: Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 204, 685–692 (2019). https://doi.org/10.1016/j.talanta.2019.06.031
  • Galandová, J., Ovádeková, R., Ferancová, A., Labuda, J.: Disposable DNA biosensor with the carbon nanotubes–polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines. Anal. Bioanal. Chem. 394, 855–861 (2009). https://doi.org/10.1007/s00216-009-2740-x
  • Suginta, W., Khunkaewla, P., Schulte, A.: Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem. Rev. 113, 5458–5479 (2013). https://doi.org/10.1021/cr300325r
  • Di Iorio, D., Marti, A., Koeman, S., Huskens, J.: Clickable poly-l-lysine for the formation of biorecognition surfaces. RSC Adv. 9, 35608–35613 (2019). https://doi.org/10.1039/C9RA08714A
  • Zhang, P., Lu, C., Niu, C., Wang, X., Li, Z., Liu, J.: Binding Studies of Cationic Conjugated Polymers and DNA for Label-Free Fluorescent Biosensors. ACS Appl. Polym. Mater. 4, 6211–6218 (2022). https://doi.org/10.1021/acsapm.2c00986
  • Stillman, B.A., Tonkinson, J.L.: FASTTM Slides: A Novel Surface for Microarrays. Biotechniques 29, 630–635 (2000). https://doi.org/10.2144/00293pf01
  • Sassolas, A., Leca-Bouvier, B.D., Blum, L.J.: DNA Biosensors and Microarrays. Chem. Rev. 108, 109–139 (2008). https://doi.org/10.1021/cr0684467
  • Zhang, F., Wang, S., Liu, J.: Gold Nanoparticles Adsorb DNA and Aptamer Probes Too Strongly and a Comparison with Graphene Oxide for Biosensing. Anal. Chem. 91, 14743–14750 (2019). https://doi.org/10.1021/acs.analchem.9b04142
  • Wang, S., McGuirk, C.M., Ross, M.B., Wang, S., Chen, P., Xing, H., Liu, Y., Mirkin, C.A.: General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles. J. Am. Chem. Soc. 139, 9827–9830 (2017). https://doi.org/10.1021/jacs.7b05633
  • Sun, Z., Wu, S., Ma, J., Shi, H., Wang, L., Sheng, A., Yin, T., Sun, L., Li, G.: Colorimetric Sensor Array for Human Semen Identification Designed by Coupling Zirconium Metal-Organic Frameworks with DNA-Modified Gold Nanoparticles. ACS Appl. Mater. Interfaces 11, 36316–36323 (2019). https://doi.org/10.1021/acsami.9b10729
  • Xiong, D., Cheng, J., Ai, F., Wang, X., Xiao, J., Zhu, F., Zeng, K., Wang, K., Zhang, Z.: Insight into the Sensing Behavior of DNA Probes Based on MOF–Nucleic Acid Interaction for Bioanalysis. Anal. Chem. 95, 5470–5478 (2023). https://doi.org/10.1021/acs.analchem.3c00832
  • Weizmann, Y., Chenoweth, D.M., Swager, T.M.: Addressable Terminally Linked DNA−CNT Nanowires. J. Am. Chem. Soc. 132, 14009–14011 (2010). https://doi.org/10.1021/ja106352y
  • Vittala, S.K., Han, D.: DNA-Guided Assemblies toward Nanoelectronic Applications. ACS Appl. Bio Mater. 3, 2702–2722 (2020). https://doi.org/10.1021/acsabm.9b01178
  • Rashid, J.I.A., Yusof, N.A.: The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio-Sens. Res. 16, 19–31 (2017). https://doi.org/10.1016/j.sbsr.2017.09.001
  • Papadopoulou, E., Gale, N., Thompson, J.F., Fleming, T.A., Brown, T., Bartlett, P.N.: Specifically horizontally tethered DNA probes on Au surfaces allow labelled and label-free DNA detection using SERS and electrochemically driven melting. Chem. Sci. 7, 386–393 (2016). https://doi.org/10.1039/C5SC03185K
  • Goodrich, G.P., Helfrich, M.R., Overberg, J.J., Keating, C.D.: Effect of Macromolecular Crowding on DNA: Au Nanoparticle Bioconjugate Assembly. Langmuir 20, 10246–10251 (2004). https://doi.org/10.1021/la048434l
  • Ahmadi, S., Kamaladini, H., Haddadi, F., Sharifmoghadam, M.R.: Thiol-Capped Gold Nanoparticle Biosensors for Rapid and Sensitive Visual Colorimetric Detection of Klebsiella pneumoniae. J. Fluoresc. 28, 987–998 (2018). https://doi.org/10.1007/s10895-018-2262-z
  • Mobed, A., Hasanzadeh, M., Babaie, P., Agazadeh, M., Mokhtarzadeh, A., Rezaee, M.A.: DNA-based bioassay of legionella pneumonia pathogen using gold nanostructure: A new platform for diagnosis of legionellosis. Int. J. Biol. Macromol. 128, 692–699 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.125
  • Tour, J.M., Jones, L.I., Pearson, D.L., Lamba, J.J.S., Burgin, T.P., Whitesides, G.M., Allara, D.L., Parikh, A.N., Atre, S.: Self-Assembled Monolayers and Multilayers of Conjugated Thiols, .alpha.,.omega.-Dithiols, and Thioacetyl-Containing Adsorbates. Understanding Attachments between Potential Molecular Wires and Gold Surfaces. J. Am. Chem. Soc. 117, 9529–9534 (1995). https://doi.org/10.1021/ja00142a021
  • Reddy Gajjala, R.K., Gade, P.S., Bhatt, P., Vishwakarma, N., Singh, S.: Enzyme decorated dendritic bimetallic nanocomposite biosensor for detection of HCHO. Talanta 238, 123054 (2022). https://doi.org/10.1016/j.talanta.2021.123054
  • Yang, B., Kong, J., Fang, X.: Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat. Commun. 13, 3999 (2022). https://doi.org/10.1038/s41467-022-31740-3
  • Kuscu, M., Ramezani, H., Dinc, E., Akhavan, S., Akan, O.B.: Fabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT). Sci. Rep. 11, 19600 (2021). https://doi.org/10.1038/s41598-021-98609-1
  • Guo, Y., Shen, G., Sun, X., Wang, X.: Electrochemical Aptasensor Based on Multiwalled Carbon Nanotubes and Graphene for Tetracycline Detection. IEEE Sens. J. 15, 1951–1958 (2015). https://doi.org/10.1109/JSEN.2014.2370051
  • Pan, T.-M., Liao, P.-Y.: High sensitivity and rapid detection of KRAS and BRAF gene mutations in colorectal cancer using YbTixOy electrolyte-insulator-semiconductor biosensors. Mater. Today Chem. 25, 100979 (2022). https://doi.org/10.1016/j.mtchem.2022.100979
  • Rodríguez-Montelongo, S.A., Moreno-Gutiérrez, D.S., Terán-Figueroa, Y., Gómez-Durán, C.F.A., Bañuelos-Frías, A., Palestino, G.: Porous Silicon-Based DNA Biosensor for Human Papillomavirus Detection: Towards the Design of Fast and Portable Test. SILICON 15, 2371–2383 (2023). https://doi.org/10.1007/s12633-022-02179-4
  • Capo, C., Bongrand, P., Benoliel, A., Depieds, R.: Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages. Immunology 36, 501 (1979)
  • Chung, D.-J., Kim, K.-C., Choi, S.-H.: Electrochemical DNA biosensor based on avidin–biotin conjugation for influenza virus (type A) detection. Appl. Surf. Sci. 257, 9390–9396 (2011). https://doi.org/10.1016/j.apsusc.2011.06.015
  • Liu, G., Wan, Y., Gau, V., Zhang, J., Wang, L., Song, S., Fan, C.: An Enzyme-Based E-DNA Sensor for Sequence-Specific Detection of Femtomolar DNA Targets. J. Am. Chem. Soc. 130, 6820–6825 (2008). https://doi.org/10.1021/ja800554t
  • Pan, S., Rothberg, L.: Chemical Control of Electrode Functionalization for Detection of DNA Hybridization by Electrochemical Impedance Spectroscopy. Langmuir 21, 1022–1027 (2005). https://doi.org/10.1021/la048083a
  • Deng, C., Xia, Y., Xiao, C., Nie, Z., Yang, M., Si, S.: Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode. Biosens. Bioelectron. 31, 469–474 (2012). https://doi.org/10.1016/j.bios.2011.11.018
  • Jalit, Y., Moreno, M., Gutierrez, F.A., Sanchez Arribas, A., Chicharro, M., Bermejo, E., Zapardiel, A., Parrado, C., Rivas, G.A., Rodríguez, M.C.: Adsorption and Electrooxidation of Nucleic Acids at Glassy Carbon Electrodes Modified with Multiwalled Carbon Nanotubes Dispersed In Polylysine. Electroanalysis 25, 1116–1121 (2013). https://doi.org/10.1002/elan.201200622
  • Zhang, S., Ding, Y., Wei, H.: Ruthenium Polypyridine Complexes Combined with Oligonucleotides for Bioanalysis: A Review. Molecules 19, 11933–11987 (2014). https://doi.org/10.3390/molecules190811933
  • Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003). https://doi.org/10.1038/nbt873
  • Wu, N., Gao, W., He, X., Chang, Z., Xu, M.: Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry. Biosens. Bioelectron. 39, 210–214 (2013). https://doi.org/10.1016/j.bios.2012.07.038
  • Yu, H.-Z., Luo, C.-Y., Sankar, C.G., Sen, D.: Voltammetric Procedure for Examining DNA-Modified Surfaces: Quantitation, Cationic Binding Activity, and Electron-Transfer Kinetics. Anal. Chem. 75, 3902–3907 (2003). https://doi.org/10.1021/ac034318w
  • Ilkhani, H., Hughes, T., Li, J., Zhong, C.J., Hepel, M.: Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens. Bioelectron. 80, 257–264 (2016). https://doi.org/10.1016/j.bios.2016.01.068
  • Ribeiro Teles, F.R., França dos Prazeres, D.M., De Lima-Filho, J.L.: Electrochemical Detection of a Dengue-related Oligonucleotide Sequence Using Ferrocenium as a Hybridization Indicator. Sensors. 7, 2510–2518 (2007). https://doi.org/10.3390/s7112510
  • Huang, J., Wu, J., Li, Z.: Biosensing using hairpin DNA probes. 34, 1–27 (2015). https://doi.org/10.1515/revac-2015-0010
  • Farjami, E., Clima, L., Gothelf, K., Ferapontova, E.E.: “Off−On” Electrochemical Hairpin-DNA-Based Genosensor for Cancer Diagnostics. Anal. Chem. 83, 1594–1602 (2011). https://doi.org/10.1021/ac1032929
  • Fu, L., Zhuang, J., Tang, D., Que, X., Lai, W., Chen, G.: DNA pseudoknot-functionalized sensing platform for chemoselective analysis of mercury ions. Analyst 137, 4425–4427 (2012). https://doi.org/10.1039/C2AN35662G
  • Xiao, Y., Qu, X., Plaxco, K.W., Heeger, A.J.: Label-Free Electrochemical Detection of DNA in Blood Serum via Target-Induced Resolution of an Electrode-Bound DNA Pseudoknot. J. Am. Chem. Soc. 129, 11896–11897 (2007). https://doi.org/10.1021/ja074218y
  • Singh, N.K., Chung, S., Chang, A.-Y., Wang, J., Hall, D.A.: A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer. Biosens. Bioelectron. 227, 115097 (2023). https://doi.org/10.1016/j.bios.2023.115097
  • Majee, P., Kumar Mishra, S., Pandya, N., Shankar, U., Pasadi, S., Muniyappa, K., Nayak, D., Kumar, A.: Sci. Rep. 10, 1477 (2020). https://doi.org/10.1038/s41598-020-58406-8
  • Zhao, Y., Kan, Z., Zeng, Z., Hao, Y., Chen, H., Tan, Z.: Determining the Folding and Unfolding Rate Constants of Nucleic Acids by Biosensor. Application to Telomere G-Quadruplex. J. Am. Chem. Soc. 126, 13255–13264 (2004). https://doi.org/10.1021/ja048398c
  • Bahreyni, A., Ramezani, M., Alibolandi, M., Hassanzadeh, P., Abnous, K., Taghdisi, S.M.: High affinity of AS1411 toward copper; its application in a sensitive aptasensor for copper detection. Anal. Biochem. 575, 1–9 (2019). https://doi.org/10.1016/j.ab.2019.03.016
  • Hao, Z., Wang, Z., Li, Y., Zhu, Y., Wang, X., De Moraes, C.G., Pan, Y., Zhao, X., Lin, Q.: Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications. Nanoscale 10, 21681–21688 (2018). https://doi.org/10.1039/C8NR04315A
  • Travascio, P., Witting, P.K., Mauk, A.G., Sen, D.: The Peroxidase Activity of a Hemin−DNA Oligonucleotide Complex: Free Radical Damage to Specific Guanine Bases of the DNA. J. Am. Chem. Soc. 123, 1337–1348 (2001). https://doi.org/10.1021/ja0023534
  • Wang, Z., Zhao, J., Bao, J., Dai, Z.: Construction of Metal-Ion-Free G-quadruplex-Hemin DNAzyme and Its Application in S1 Nuclease Detection. ACS Appl. Mater. Interfaces 8, 827–833 (2016). https://doi.org/10.1021/acsami.5b10165
  • Cheng, X., Liu, X., Bing, T., Cao, Z., Shangguan, D.: General Peroxidase Activity of G-Quadruplex−Hemin Complexes and Its Application in Ligand Screening. Biochemistry 48, 7817–7823 (2009). https://doi.org/10.1021/bi9006786
  • Xu, J., Yan, C., Wang, X., Yao, B., Lu, J., Liu, G., Chen, W.: Ingenious Design of DNA Concatamers and G-Quadruplex Wires Assisted Assembly of Multibranched DNA Nanoarchitectures for Ultrasensitive Biosensing of miRNA. Anal. Chem. 91, 9747–9753 (2019). https://doi.org/10.1021/acs.analchem.9b01353
  • Owens, E.A., Huynh, H.T., Stroeva, E.M., Barman, A., Ziabrev, K., Paul, A., Nguyen, S.V., Laramie, M., Hamelberg, D., Germann, M.W., Wilson, W.D., Henary, M.: Second Generation G-Quadruplex Stabilizing Trimethine Cyanines. Bioconjug. Chem. 30, 2647–2663 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00571
  • Tello, A., Cao, R., Marchant, M.J., Gomez, H.: Conformational Changes of Enzymes and Aptamers Immobilized on Electrodes. Bioconjug. Chem. 27, 2581–2591 (2016). https://doi.org/10.1021/acs.bioconjchem.6b00553
  • Sorek, R., Lawrence, C.M., Wiedenheft, B.: CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea. Annu. Rev. Biochem. 82, 237–266 (2013). https://doi.org/10.1146/annurev-biochem-072911-172315
  • Wan, Y., Zong, C., Li, X., Wang, A., Li, Y., Yang, T., Bao, Q., Dubow, M., Yang, M., Rodrigo, L.-A., Mao, C.: New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem. Rev. 122, 8126–8180 (2022). https://doi.org/10.1021/acs.chemrev.1c01063
  • Nguyen, P.Q., Soenksen, L.R., Donghia, N.M., Angenent-Mari, N.M., de Puig, H., Huang, A., Lee, R., Slomovic, S., Galbersanini, T., Lansberry, G., Sallum, H.M., Zhao, E.M., Niemi, J.B., Collins, J.J.: Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021). https://doi.org/10.1038/s41587-021-00950-3
  • Lu, M., Zhang, X., Xu, D., Li, N., Zhao, Y.: Encoded Structural Color Microneedle Patches for Multiple Screening of Wound Small Molecules. Adv. Mater. n/a, 2211330 (2023). https://doi.org/10.1002/adma.202211330
  • Lin, S., Cheng, X., Zhu, J., Wang, B., Jelinek, D., Zhao, Y., Wu, T.-Y., Horrillo, A., Tan, J., Yeung, J., Yan, W., Forman, S., Coller, H.A., Milla, C., Emaminejad, S.: Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8, eabq4539. https://doi.org/10.1126/sciadv.abq4539