Modelo Científico de la Nutrición Vegetalanálisis epistemológico y propuesta de progresión de aprendizaje
- Oier Pedrera 1
- Oihana Barrutia 1
- José Ramón Díez 1
-
1
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
ISSN: 1697-011X
Year of publication: 2023
Volume: 20
Issue: 3
Pages: 3102
Type: Article
More publications in: Revista Eureka sobre enseñanza y divulgación de las ciencias
Abstract
The teaching and learning of the Scientific Model of Plant Nutrition (SMPN) is a pivotal topic in science education. However, it is also one of the most difficult contents to both teach and learn. With the aim of guiding teachers in the design of teaching/learning sequences and the construction of effective learning environments, this study consists of three sections. First, an epistemological analysis of the SMPN is performed in order to define the key ideas that must be worked on during schooling. In the second, considering the didactic research and the analysis of the context and school curriculum, it is defined the school science model students should construct by the end of secondary education. In the last section a proposed learning progression which describes a hypothetical sequencing of the contents of the model is articulated by taking into account the teaching/learning difficulties of the topic, previously proposed learning progressions, and international curricular orientations
Bibliographic References
- Acevedo-Díaz, J. A., García-Carmona, A., Aragón-Méndez, M. del M., y Oliva-Martínez, J. M. (2017). Modelos científicos: Significado y papel en la práctica científica. Revista científica, 3(30), 155. https://doi.org/10.14483/23448350.12288
- Adúriz-Bravo, A. (2012). Algunas características clave de los modelos científicos relevantes para la educación química. Educación Química, 23, 248-256. https://doi.org/10.1016/S0187-893X(17)30151-9
- Akçay, S. (2017). Prospective elementary science teachers’ understanding of photosynthesis and cellular respiration in the context of multiple biological levels as nested systems. Journal of Biological Education, 51(1), 52-65. https://doi.org/10.1080/00219266.2016.1170067
- Alonzo, A. C., Benus, M., Bennett, W., y Pinney, B. (2009). A learning progression for elementary school students’ understanding of plant nutrition. 323-332.
- American Association for the Advancement of Science (AAAS) (Ed.). (2001). Atlas of science literacy. American Association for the Advancement of Science: National Science Teachers Association.
- Angosto Sánchez, I., y Morcillo Ortega, J. G. (2020). Teaching vegetable nutrition: From the problem to the proposal. Journal of Biological Education, 1-15. https://doi.org/10.1080/00219266.2020.1808514
- Arnon, D. I. (1982). Sunlight, Earth, Life: The grand design of photosynthesis. The Sciences, 22(7), 22-27. https://doi.org/10.1002/j.2326-1951.1982.tb02101.x
- BOPV. (2015, diciembre 22). Por el que se establece el currículo de Educación Básica y se implanta en la Comunidad Autónoma del País Vasco. Decreto 236/2015.
- BOPV. (2016, septiembre 6). Por el que se establece el currículo del Bachillerato y se implanta en la Comunidad Autónoma del País Vasco. Decreto 127/2016.
- Brown, M. H., y Schwartz, R. S. (2009). Connecting photosynthesis and cellular respiration: Preservice teachers’ conceptions. Journal of Research in Science Teaching, 46(7), 791-812. https://doi.org/10.1002/tea.20287
- Bryce, C. M., Baliga, V. B., De Nesnera, K. L., Fiack, D., Goetz, K., Tarjan, L. M., Wade, C. E., Yovovich, V., Baumgart, S., Bard, D. G., Ash, D., Parker, I. M., y Gilbert, G. S. (2016). Exploring models in the biology classroom. The American Biology Teacher, 78(1), 35-42. https://doi.org/10.1525/abt.2016.78.1.35
- Campbell, T., Schwarz, C., y Windschitl, M. (2016). What we call misconceptions may be necessary stepping-stones toward making sense of the world. Science and Children, 53(7). https://doi.org/10.2505/4/sc16_053_07_28
- Cañal, P. (1990). La enseñanza en el campo conceptual de la nutrición de las plantas verdes: Un estudio didáctico en la Educación Básica. Universidad de Sevilla.
- Cañal, P. (2005). La nutrición de las plantas: Enseñanza y aprendizaje. Síntesis.
- Charrier Melillán, M., Cañal, P., y Rodrigo Vega, M. (2007). Student’s alternative conceptions on photosynthesis and respiration: A bibliographical revision in relation to plant nutrition researches and learning. Enseñanza de las Ciencias, 24(3), 401-409. https://doi.org/10.5565/rev/ensciencias.3790
- Crowe, A., Dirks, C., y Wenderoth, M. P. (2008). Biology in Bloom: Implementing Bloom’s taxonomy to enhance student learning in Biology. CBE—Life Sciences Education, 7, 368-381 https://doi.org/10.1187/cbe.08-05-0024
- Dauer, J. M., Doherty, J. H., Freed, A. L., y Anderson, C. W. (2014). Connections between student explanations and arguments from evidence about plant growth. CBE—Life Sciences Education, 13(3), 397-409. https://doi.org/10.1187/cbe.14-02-0028
- Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., y Parchmann, I. (2012). The model of educational reconstruction – a framework for improving teaching and learning science. En D. Jorde y J. Dillon (Eds.), Science Education Research and Practice in Europe (pp. 13-37). SensePublishers. https://doi.org/10.1007/978-94-6091-900-8_2
- Duncan, R. G., y Hmelo-Silver, C. E. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609. https://doi.org/10.1002/tea.20316
- Duschl, R., Maeng, S., y Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476
- Galagovsky, L. R., y Adúriz-Bravo, A. (2001). Modelos y analogías en la enseñanza de las ciencias naturales. El concepto de modelo didáctico analógico. Enseñanza de las Ciencias, 19(2), 231-242. https://doi.org/10.5565/rev/ensciencias.4000
- Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742-752. https://doi.org/10.1086/425063
- Gilbert, J. K. (1998). Explaining with models. En ASE guide to secondary science education (M. Ratcliffe, pp. 159-166). Stanley Thornes.
- Gilbert, J. K., y Boulter, C. J. (Eds.). (2000). Developing models in science education. Springer Netherlands. https://doi.org/10.1007/978-94-010-0876-1
- Gilbert, J. K., y Justi, R. (2016). Modelling-based teaching in science education (Vol. 9). Springer International Publishing. https://doi.org/10.1007/978-3-319-29039-3
- González Rodríguez, C. (2009). Problemática de la nutrición vegetal en la educación obligatoria. Una propuesta de secuencia. Revista de Educación en Biología, 12(2), 36-43.
- González Rodríguez, C. (2018). ¿Han mejorado las ciencias de la naturaleza en los currículos de la E.S.O. desde L.O.G.S.E hasta la L.O.M.C.E: la nutrición vegetal? En C. Martínez Losada y S. García Barros (Eds.), 28 Encuentros de didáctica de las ciencias experimentales: Iluminando el cambio educativo (pp. 697-702). Universidade da Coruña.
- González Rodríguez, C., García Barros, S., y Martínez Losada, C. (2012). La nutrición vegetal desde el pensamiento docente. Revista Eureka sobre enseñanza y divulgación de las ciencias., 9(1), 93-105. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2012.v9.i1.07
- González Rodríguez, C., Martínez Losada, C., y García Barros, S. (2014). El modelo de nutrición vegetal a través de la historia. Revista Eureka sobre enseñanza y divulgación de las ciencias, 11(1), 2-12. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2014.v11.i1.02
- González-Rodríguez, C., García-Barrios, S., y Martínez-Lozada, C. (2009). Plant nutrition in Spanish secondary textbooks. Journal of Biological Education, 43(4), 152-158. https://doi.org/10.1080/00219266.2009.9656175
- Gotwals, A. W., y Songer, N. B. (2009). Reasoning up and down a food chain: Using an assessment framework to investigate students’ middle knowledge. Science Education, 259-281. https://doi.org/10.1002/sce.20368
- Greca, I. M., y Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11. https://doi.org/10.1080/095006900289976
- Guisasola, J., Ametller, J., y Zuza, K. (2021). Investigación basada en el diseño de Secuencias de Enseñanza-Aprendizaje: Una línea de investigación emergente en Enseñanza de las Ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1-18. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1801
- Guisasola, J., Montero, A., y Fernández, M. (2008). La historia del concepto de fuerza electromotriz en circuitos eléctricos y la elección de indicadores de aprendizaje comprensivo. Revista Brasileira de Ensino de Física, 30(1), 1604.1-1604.8. https://doi.org/10.1590/S1806-11172008000100018
- Guisasola, J., Zuza, K., Ametller, J., y Gutierrez-Berraondo, J. (2017). Evaluating and redesigning teaching learning sequences at the introductory physics level. Physical Review Physics Education Research, 13(2), 020139. https://doi.org/10.1103/PhysRevPhysEducRes.13.020139
- Harlen, W. (2015). Principles and big ideas of science education. Association for science education.
- Hartley, L. M., Wilke, B. J., Schramm, J. W., D’Avanzo, C., y Anderson, C. W. (2011). College students’ understanding of the carbon cycle: Contrasting principle-based and informal reasoning. BioScience, 61(1), 65-75. https://doi.org/10.1525/bio.2011.61.1.12
- Jin, H., Mikeska, J. N., Hokayem, H., y Mavronikolas, E. (2019). Toward coherence in curriculum, instruction, and assessment: A review of learning progression literature. Science Education, 103(5), 1206-1234. https://doi.org/10.1002/sce.21525
- Jin, H., Zhan, L., y Anderson, C. W. (2013). Developing a fine-grained learning progression framework for carbon-transforming processes. International Journal of Science Education, 35(10), 1663-1697. https://doi.org/10.1080/09500693.2013.782453
- Justi, R. (2007). La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza de las Ciencias, 24(2), 173-184. https://doi.org/10.5565/rev/ensciencias.3798
- Kuhn, T. S. (1984). La estructura de las revoluciones científicas. Fondo de Cultura Económica.
- Lambers, H., Chapin, F. S., y Pons, T. L. (2008). Plant physiological ecology. Springer New York. https://doi.org/10.1007/978-0-387-78341-3
- Lewis, J. (2009). Can theoretical constructs in science be generalised across disciplines?: Eduactional Research. Journal of Biological Education, 44(1), 5-11. https://doi.org/10.1080/00219266.2009.9656185
- Lin, C., y Hu, R. (2003). Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25(12), 1529-1544. https://doi.org/10.1080/0950069032000052045
- Matthews, M. R. (2004). Thomas Kuhn’s impact on science education: What lessons can be learned? Science Education, 88(1), 90-118. https://doi.org/10.1002/sce.10111
- Meidner, H. (1985). Historical Sketches 11. Journal of Experimental Botany, 36(11), 1831-1832. https://doi.org/10.1093/jxb/36.11.1831
- Métioui, A., Matoussi, F., y Trudel, L. (2016). The teaching of photosynthesis in secondary school: A history of the science approach. Journal of Biological Education, 50(3), 275-289. https://doi.org/10.1080/00219266.2015.1085427
- Mohan, L., Chen, J., y Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46(6), 675-698. https://doi.org/10.1002/tea.20314
- Morrison, M., y Morgan, M. S. (1999). Models as mediating instruments. En M. S. Morgan y M. Morrison (Eds.), Models as mediators (1.a ed., pp. 10-37). Cambridge University Press. https://doi.org/10.1017/CBO9780511660108.003
- Oh, P. S., y Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
- Oliva, J. M. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de las Ciencias, 37(2), 5-24. https://doi.org/10.5565/rev/ensciencias.2648
- Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177-196. https://doi.org/10.1007/s10972-014-9384-1
- Parker, J. M., Anderson, C. W., Heidemann, M., Merrill, J., Merritt, B., Richmond, G., y Urban-Lurain, M. (2012). Exploring undergraduates’ understanding of photosynthesis using diagnostic question clusters. CBE—Life Sciences Education, 11(1), 47-57. https://doi.org/10.1187/cbe.11-07-0054
- Parker, J. M., de los Santos, E. X., y Anderson, C. W. (2013). What learning progressions on carbon-transforming processes tell us about how students learn to use the laws of conservation of matter and energy. Educación Química, 24(4), 399-406. https://doi.org/10.1016/S0187-X(13)72493-5
- Parker, J. M., Santos, E. X. de los, y Anderson, C. W. (2015). Learning progressions y climate change. The American Biology Teacher, 77(4), 232-238. https://doi.org/10.1525/abt.2015.77.4.2
- Pedrera, O., Barrutia, O., y Díez, J. R. (2023). Teaching/learning difficulties of the Scientific Model of Plant Nutrition – a systematic literature review (2000-2022). [Manuscrito enviado para publicación]
- Roberts, D. A. (2007). Scientific Literacy/Science Literacy. En S. K. Abell y N. G. Lederman (Eds.), Handbook of Research on Science Education (pp. 729-780). Mahwah, NJ: Lawrence Erlbaum Associates.
- Schramm, J. W., Jin, H., Keeling, E. G., Johnson, M., y Shin, H. J. (2018). Improved student reasoning about carbon-transforming processes through inquiry-based learning activities derived from an empirically validated learning progression. Research in Science Education, 48(5), 887-911. https://doi.org/10.1007/s11165-016-9584-0
- Stern, L., y Roseman, J. E. (2004). Can middle-school science textbooks help students learn important ideas? Findings from Project 2061’s curriculum evaluation study: life science. Journal of Research in Science Teaching, 41(6), 538-568. https://doi.org/10.1002/tea.20019
- Taber, K. S. (2000). Finding the optimum level of simplification: The case of teaching about heat and temperature. Physics Education, 35(5), 320-325. https://doi.org/10.1088/0031-9120/35/5/301
- Taber, K. S., y Akpan, B. (Eds.). (2017). Science education: An international course companion. Sense Publishers.
- Treagust, D. F., Chittleborough, G., y Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485
- Ummels, M. H. J., Kamp, M. J. A., De Kroon, H., y Boersma, K. Th. (2015). Promoting conceptual coherence within context-based biology education. Science Education, 99(5), 958-985. https://doi.org/10.1002/sce.21179
- Victorian Curriculum and Assessment Authority (VCAA). (2015). Victorian curriculum: Foundation-10. Victorian curriculum: Foundation-10. https://victoriancurriculum.vcaa.vic.edu.au/
- Vosniadou, S. (2019). The development of students’ understanding of science. Frontiers in Education, 4(32). https://doi.org/10.3389/feduc.2019.00032
- Wandersee, J. H. (1986). Can the history of science help science educators anticipate students’ misconceptions? Journal of Research in Science Teaching, 23(7), 581-597. https://doi.org/10.1002/tea.3660230703
- Willard, T. (2020). The NTSA atlas of the three dimensions. National Science Teaching Association.
- Zuza, K., van Kampen, P., De Cock, M., Kelly, T., y Guisasola, J. (2018). Introductory university physics students’ understanding of some key characteristics of classical theory of the electromagnetic field. Physical Review Physics Education Research, 14(2), 020117. https://doi.org/10.1103/PhysRevPhysEducRes.14.020117