Resumen de la tarea de ClinAIS en IberLEF 2023Identificación Automática de Secciones en Documentos Clínicos en Castellano

  1. Gojenola Galletebeitia, Koldo
  2. Atutxa Salazar, Aitziber
  3. De la Iglesia, Iker
  4. Vivó, María
  5. Chocrón, Paula
  6. Maeztu, Gabriel de
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2023

Número: 71

Páginas: 289-299

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

La tarea ClinAIS organizada por IOMED y el centro HiTZ tiene como objetivo abordar la identificación de siete tipos de secciones dentro de registros clínicos no-estructurados en español. Estos registros, conocidos como Narrativas Clínicas Electrónicas (ECNs), almacenan información crucial acerca de la salud personal. Sin embargo, la falta de estandarización en los formatos plantea desafíos en el desarrollo y evaluación de sistemas automatizados para el análisis de documentos clínicos. Veintisiete participantes se registraron para la tarea, de los cuales cinco presentaron resultados. Este artículo presenta los resultados y metodologías utilizadas en la tarea ClinAIS, contribuyendo al avance del análisis de notas clínicas y su aplicación en la mejora de la toma de decisiones en la atención médica y el cuidado al paciente.

Referencias bibliográficas

  • Atutxa, A., A. D. de Ilarraza, K. Gojenola, M. Oronoz, and O. P. de Viñaspre. 2019. Interpretable deep learning to map diagnostic texts to ICD-10 codes. International Journal of Medical Informatics, 129:49 – 59.
  • Carrino, C. P., J. Llop, M. Pamies, A. Gutierrez-Fandiño, J. Armengol- Estape, J. Silveira-Ocampo, A. Valencia, A. Gonzalez-Agirre, and M. Villegas. 2022. Pretrained biomedical language models for clinical NLP in Spanish. In Proceedings of the 21st Workshop on Biomedical Language Processing, pages 193–199, Dublin, Ireland, May. Association for Computational Linguistics.
  • Carvallo, A., M. Rojas, C. Muñoz-Castro, C. Aracena, R. Guerra, B. Pizarro, and J. Dunstan. 2023. Automatic Section Classification in Spanish Clinical Narratives Using Chunked Named Entity Recognition. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), CEUR Workshop Proceedings. CEUR-WS.org.
  • Chizhikova, M., M. C. Dıaz-Galiano, L. A. Ureña-Lopez, and M. T. M. Valdivia. 2023. Automatic Segmentation of Clinical Narratives in Sections with Pre-Trained Clinical Transformer Models. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), CEUR Workshop Proceedings. CEUR-WS.org.
  • De la Iglesia, I., M. Vivo, P. Chocron, G. de Maeztu, K. Gojenola, and A. Atutxa. 2023. An Open Source Corpus and Automatic Tool for Section Identification in Spanish Health Records. Journal of Biomedical Informatics.
  • Duque, A., L. Araujo, J. Martinez-Romo, and H. Fabregat. 2023. LSI UNED at ClinAIS 2023: Transformer Models for Section Identification in Spanish Medical Reports. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), CEUR Workshop Proceedings. CEURWS. org.
  • Fournier, C. 2013. Evaluating text segmentation using boundary edit distance. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1702–1712, Sofia, Bulgaria, August. Association for Computational Linguistics.
  • Fournier, C. and D. Inkpen. 2012. Segmentation similarity and agreement. In Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, June 3-8, 2012, Montreal, Canada, pages 152–161. The Association for Computational Linguistics.
  • Gao, Y., J. Caskey, T. Miller, B. Sharma, M. M. Churpek, D. Dligach, and M. Afshar. 2022a. Tasks 1 and 3 from progress note understanding suite of tasks: Soap note tagging and problem list summarization (version 1.0.0). In PhysioNet.
  • Gao, Y., D. Dligach, T. Miller, S. Tesch, R. Laffin, M. M. Churpek, and M. Afshar. 2022b. Hierarchical annotation for building a suite of clinical natural language processing tasks: Progress note understanding. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 5484–5493, Marseille, France, June. European Language Resources Association.
  • Goenaga, I., X. Lahuerta, A. Atutxa, and K. Gojenola. 2021. A section identification tool: Towards HL7 CDA/CCR standardization in Spanish discharge summaries. Journal of Biomedical Informatics, 121:103875.
  • Heras, J. 2023. Two-stage Fine-Tuning for Automatic Identification of Sections in Clinical Documents. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), CEUR Workshop Proceedings. CEUR-WS.org.
  • Lee, J., W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. 2019. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240, 09.
  • Levenshtein, V. I. 1966. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady, 10(8).
  • Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. 2019. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692.
  • Marco, P., M. Jose Castro-Bleda, E. Segarra, and L. F. Hurtado. 2023. ELiRF at ClinAIS Task: Automatic Identification of Sections in Clinical Documents. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), CEURWorkshop Proceedings. CEUR-WS.org.
  • Miranda-Escalada, A., A. Gonzalez-Agirre, J. Armengol-Estape, and M. Krallinger. 2020. Overview of automatic clinical coding: annotations, guidelines, and solutions for non-english clinical cases at codiesp track of CLEF eHealth 2020. In Working Notes of Conference and Labs of the Evaluation (CLEF) Forum, CEUR Workshop Proceedings.
  • Pomares-Quimbaya, A., M. Kreuzthaler, and S. Schulz. 2019. Current approaches to identify sections within clinical narratives from electronic health records: a systematic review. BMC Medical Research Methodology, 19.
  • Terroba, A. R. 2018. Mejora de la calidad del informe clınico de alta hospitalaria desde el punto de vista linguıstico. PhD Thesis, University of La Rioja.