Effect of trampling and digging from shellfishing on Zostera noltei (Zosteraceae) intertidal seagrass beds

  1. Garmendia, Joxe Mikel
  2. Valle, Mireia
  3. Borja, Ángel
  4. Chust, Guillem
  5. Lee, Dae-Jin
  6. Germán Rodríguez, J.
  7. Franco, Javier
Journal:
Scientia Marina

ISSN: 0214-8358

Year of publication: 2017

Volume: 81

Issue: 1

Pages: 121-128

Type: Article

DOI: 10.3989/SCIMAR.04482.17A DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Scientia Marina

Abstract

Seagrass beds are among the most valuable ecosystems in the world but they are also among the ones most affected by human activities, and they have decreased significantly in recent decades. In many areas, such as in the Basque Country (northern Spain), seagrass beds occupy areas that are also of interest for human activities such as recreation and shellfishing. They may therefore face a number of pressures that cause damage or irreversible states. Taking into account the limited distribution of seagrass beds in the Basque Country and the interest in their conservation, an eight-month field experiment focusing on the Zostera noltei growing season was carried out to evaluate the effect of shellfish gathering. We used generalized linear models to assess different intensities of trampling and digging, as the most important pressures of shellfishing applied to Zostera noltei beds. The results indicated that shoot density of Z. noltei was negatively altered by trampling treatments and positively affected (as a recovery) by digging treatments. This finding suggests that shellfishing adversely affects seagrass abundance and is potentially responsible for its low density in the Oka estuary. Our findings are important for management and should be taken into account in seagrass conservation and restoration programmes.

Funding information

The authors would like to thank the Urdaibai Biosphere Reserve Board for giving permission to carry out field experiments and Itziar Canive for her help in the experiment. This work was funded by the Basque Water Agency (URA) through a cooperation agreement signed with AZTI for research on the application of Directive 2000/60/EC in the coastal area of the Basque Country. The research of Dae-Jin Lee was also supported by the Basque Government through the BERC 2014-2017 programme and by the Spanish Ministry of Economy and Competitiveness (MINECO) through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323. This paper is contribution number 800 of the Marine Research Division (AZTI).

Bibliographic References

  • Alexandre A., Santos R., Serrão E. 2005. Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Mar. Ecol. Prog. Ser. 298: 115-122 https://doi.org/10.3354/meps298115
  • Auby I., Bost C.-A., Budzinski H., et al. 2011. Régression des herbiers de zostères dans le Bassin d'Arcachon: état des lieux et recherche des causes. Rapport Ifremer RST/LER/AR 11.007 Gironde Conseil Général, Arcachon, 195 pp.
  • Baden S., Gullström M., Lundén B., et al. 2003. Vanishing seagrass (Zostera marina, L.) in Swedish coastal waters. Ambio 32: 374-377 https://doi.org/10.1579/0044-7447-32.5.374 PMid:14571969
  • Bates D., Maechler M., Bolker B., et al. 2015. Fitting Linear Mixed- Effects Models using lme4. J. Stat. Soft. 67(1): 1-48 https://doi.org/10.18637/jss.v067.i01
  • Boese B.L. 2002. Effects of recreational clam harvesting on eelgrass (Zostera marina) and associated infaunal invertebrates: in situ manipulative experiments. Aquat. Bot. 73: 63-74 https://doi.org/10.1016/S0304-3770(02)00004-9
  • Breslow N.E., Clayton D.G. 1993. Approximate inference in Generalized Linear Mixed Models. J. Am. Stat. Assoc. 88: 9-25 https://doi.org/10.1080/01621459.1993.10594284
  • Brun F.G., Vergara J.J., Navarro G., et al. 2003. Effect of shading by Ulva rigida canopies on growth and carbon balance of the seagrass Zostera noltii. Mar. Ecol. Prog. Ser. 265: 85-96 https://doi.org/10.3354/meps265085
  • Cabaço S., Alexandre A., Santos S. 2005. Population-level effects of clam harvesting on the seagrass Zostera noltii. Mar. Ecol. Prog. Ser. 298: 123-129 https://doi.org/10.3354/meps298123
  • Cabaço S., Santos R., Duarte C.M. 2008. The impact of sediment burial and erosion on seagrasses: A review. Estuar. Coast. Shelf S. 79: 354-366 https://doi.org/10.1016/j.ecss.2008.04.021
  • Cochón G., Sánchez J.M. 2005. Variations of seagrass beds in Pontevedra (North-Western Spain): 1947-2001. Thalassas 21: 9-19.
  • Costanza R., de Groot R., Sutton P., et al. 2014. Changes in the global value of ecosystem services. Global Environ. Chang. 26: 152-158 https://doi.org/10.1016/j.gloenvcha.2014.04.002
  • Cullen-Unsworth L., Unsworth R. 2013. Seagrass meadows, ecosystem services, and sustainability. Environment 55: 14-28 https://doi.org/10.1080/00139157.2013.785864
  • Cunha A.H., Marbà N., Van Katwijk M., et al. 2012. Changing paradigms in seagrass restoration. Restor. Ecol. 20: 427-430 https://doi.org/10.1111/j.1526-100X.2012.00878.x
  • de la Torre-Castro M., Rönnbäck O. 2004. Links between humans and seagrasses-an example from tropical East Africa. Ocean Coast. Manage. 47: 361-387 https://doi.org/10.1016/j.ocecoaman.2004.07.005
  • Dolch T., Reise K. 2010. Long-term displacement of intertidal seagrass and mussel beds by expanding large sandy bedforms in the northern Wadden Sea. J. Sea Res. 63: 93-101 https://doi.org/10.1016/j.seares.2009.10.004
  • Eckrich C.E., Holmquist J.G. 2000. Trampling in a seagrass assemblage: direct effects, response of associated fauna, and the role of substrate characteristics. Mar. Ecol. Prog. Ser. 201: 199-209 https://doi.org/10.3354/meps201199
  • García-García F.J., Reyes-Martínez M.J., Ruiz-Delgado M.C., et al. 2015. Does the gathering of shellfish affect the behavior of gastropod scavengers on sandy beaches? A field experiment. J. Exp. Mar. Biol. Ecol. 467: 1-6 https://doi.org/10.1016/j.jembe.2015.02.016
  • Garmendia J.M., Valle M., Borja Á., et al. 2013. Cartografía de Zostera noltii en la costa vasca: cambios recientes en su distribución (2008-2012). Rev. Invest. Mar. 20: 1-22.
  • Guimarães M.H.M.E., Cunha A.H., Nzinga R.L., et al. 2012. The distribution of seagrass (Zostera noltii) in the Ria Formosa lagoon system and the implications of clam farming on its conservation. J. Nat. Conserv. 20: 30-40 https://doi.org/10.1016/j.jnc.2011.07.005
  • Green E.P., Short F.T. 2003. World atlas of seagrasses. Prepared by the UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, USA, 298 pp.
  • Hastings K., Hesp P., Kendrick G.A. 1995. Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast. Manage. 26: 225-246 https://doi.org/10.1016/0964-5691(95)00012-Q
  • Jiang J. 2007. Linear and Generalized Linear Mixed Models and their applications. Springer-Verlag, New York, 257 pp.
  • McCullagh P., Nelder J. 1989. Generalized Linear Models. Monographs on statistics and applied probability, 37. Chapman and Hall, London, 511 pp PMCid:PMC1385319
  • Moore K.A., Short F.T. 2006. Zostera: biology, ecology and management. In: Larkum A.W.D., Orth R.J., Duarte C.M. (eds), Seagrasses: Biology, Ecology and Conservation. Springer, Netherlands, pp. 361-386 PMCid:PMC1850945
  • Nordlund L.M., Gullström M. 2013. Biodiversity loss in seagrass meadows due to local invertebrate fisheries and harbour activities. Estuar. Coast. Shelf Sci. 135: 231-240 https://doi.org/10.1016/j.ecss.2013.10.019
  • Park S.R., Kim Y.K., Kim J.H., et al. 2011. Rapid recovery of the intertidal seagrass Zostera japonica following intense Manila clam (Ruditapes philippinarum) harvesting activity in Korea. J. Exp. Mar. Biol. Ecol. 407: 275-283 https://doi.org/10.1016/j.jembe.2011.06.023
  • Pitanga M.E., Montes M.J.F., Magalhaes K.M., et al. 2012. Quantification and classification of the main environmental impacts on a Halodule wrightii seagrass meadow on a tropical island in northeastern Brazil. Ann. Brazilian Acad. Sci. 84: 35-42 https://doi.org/10.1590/S0001-37652012005000010
  • Short F.T., Wyllie-Echeverria S. 1996. Natural and human-induced disturbance of seagrasses. Environ. Conserv. 23: 17-27 https://doi.org/10.1017/S0376892900038212
  • Short F.T., Wyllie-Echeverria S. 2000. Global seagrass declines and effects of climate change. In: Sheppard C. (ed.), Seas at the millennium: an environmental evaluation, 10-11. Elsevier Science, Amsterdam.
  • Short F.T., Koch E.W., Creed J.C., et al. 2006. SeagrassNet monitoring across the Americas: case studies of seagrass decline. Mar. Ecol. 27: 277-289 https://doi.org/10.1111/j.1439-0485.2006.00095.x
  • Short F.T., Polidoro B., Livingstone S.R., et al. 2011. Extinction risk assessment of the world's seagrass species. Biol. Conserv. 144: 1961-1971 https://doi.org/10.1016/j.biocon.2011.04.010
  • Travaille K.L., Salinas-de-León P., Bell J.J. 2015. Indication of visitor trampling impacts on intertidal seagrass beds in a New Zealand marine reserve. Ocean Coast. Manage. 114: 145-150 https://doi.org/10.1016/j.ocecoaman.2015.06.002
  • Valle M., Garmendia J.M., Chust G., et al. 2015. Increasing the chance of a successful restoration of Zostera noltii meadows. Aquat. Bot. 127: 12-19 https://doi.org/10.1016/j.aquabot.2015.07.002
  • van Alstyne K.L., Flanagan J.C., Gifford S.A. 2011. Recreational clam harvesting affects sediment nutrient remineralization and the growth of the green macroalga Ulva lactuca. J. Exp. Mar. Biol. Ecol. 401: 57-62 https://doi.org/10.1016/j.jembe.2011.03.002
  • Zuur A.F., Ieno E.N., Walker N.J., et al. 2009. Mixed effects models and extensions in ecology with R. Springer Science, New York https://doi.org/10.1007/978-0-387-87458-6