Sistema robótico de auto-acoplamiento para la interfaz multifuncional SIROM

  1. Bilbao Moreno, Daniel 1
  2. Ferrer Uriarte, Unai 2
  3. Viñals Abelan, Jose Javier 2
  4. Guerra Franco, Gonzalo 2
  5. Irigoyen Gordo, Eloy 1
  6. Cabanes Axpe, Itziar 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  2. 2 SENER Aeroespacial
Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2023

Volume: 20

Issue: 3

Pages: 269-280

Type: Article

DOI: 10.4995/RIAI.2023.19271 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Abstract

In order to perform in-orbit servicing tasks autonomously and without the need for human personnel, this work presents the development of a self-coupling robotic system based on cameras and visual markers that allow to facilitate the assembly of the SIROM (Standard Interface for Robotic Manipulation) multifunctional interface, designed by SENER Aeroespacial. For this purpose, a visual servoing control has been implemented, achieving autonomous coupling between an active SIROM device used as a robotic manipulator tool and its passive SIROM counterpart coupled to a spatial module. This development will allow this robotic interface to be a cutting-edge reference solution for performing these tasks in the future. The solution presented has been validated by carrying out independent tests for each of the subsystems that make up the prototype developed and, subsequently, the operation of the entire system has been verified in different assembly scenarios and in situations of significant misalignment. The analysis of the results obtained in this work corroborates that the designed prototype successfully achieves the main objective.

Bibliographic References

  • AENOR, 2003. Robots manipuladores industriales: Criterios de an'alisis de prestaciones y métodos de ensayo relacionados (iso 9283:2003).
  • Asif, S., 1958. Announcement of the first satelite. Pravda Newspaper Article, 311-312. URL: https://digitalarchive.wilsoncenter.org/document/165454.pdf?v=1b97d7e06318bd134c57860e8ba96a5d
  • Bradski, G., 2000. The opencv library. Dr. Dobb's Journal of Software Tools.
  • Branz, F., Francesconi, A., 2017. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta Astronautica 133, 324--333. https://doi.org/10.1016/j.actaastro.2016.11.007
  • Corke, P., 01 2017. Robotics, Vision and Control. Vol. 118. https://doi.org/10.1007/978-3-319-54413-7
  • De Stefano, M., Mishra, H., Balachandran, R., Lampariello, R., Ott, C., Secchi, C., 2019. Multi-rate tracking control for a space robot on a controlled satellite: A passivity-based strategy. IEEE Robotics and Automation Letters 4 (2), 1319-1326. https://doi.org/10.1109/LRA.2019.2895420
  • De Stefano, M., Mishra, H., Giordano, A. M., Lampariello, R., Ott, C., 2021. A relative dynamics formulation for hardware- in-the-loop simulation of onorbit robotic missions. IEEE Robotics and Automation Letters 6 (2), 3569- 3576. https://doi.org/10.1109/LRA.2021.3064510
  • Diaz-Cano, I., Quintana, F. M., Galindo, P. L., Morgado-Estevez, A., 2022. Eye-to-hand calibration of an industrial robotic arm with structured light 3d cameras. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 19, 154-163. https://doi.org/10.4995/riai.2021.16054
  • Dong, G., Zhu, Z. H., 2015. Position-based visual servo control of autonomous robotic manipulators. Acta Astronautica 115, 291-302. https://doi.org/10.1016/j.actaastro.2015.05.036
  • EROSS, P., 2022. Eross - eropean robotic orbital support services. URL: https://eross-h2020.eu/eross/
  • European Space Policy Institute, E. R., 2020. 76-in-orbit services-full report. URL: https://www.espi.or.at/reports/in-orbit-services/
  • F. Chaumette, S. H., Hutchinson, S., 2006. Visual servo control, part i: Basic approaches. IEEE Robotics Automation Magazine 13, 82-90. https://doi.org/10.1109/MRA.2006.250573
  • G. Guerra, J. Vi˜nals, I. S. M. D.-C., Gala, J., 2022. Development of robotic fluid transfer interface based on rider connector.
  • Garrido-Jurado, S., Mu˜noz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M., 2014. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition 47 (6), 2280-2292. https://doi.org/10.1016/j.patcog.2014.01.005
  • Hutchinson, S., Hager, G., Corke, P., 11 1996. A tutorial on visual servo control. Robotics and Automation, IEEE Transactions on 12, 651 - 670. https://doi.org/10.1109/70.538972
  • Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N., 04 2021. Fiducial markers for pose estimation: Overview, applications and experimental comparison of the artag, apriltag, aruco and stag markers. Journal of Intelligent Robotic Systems 101. https://doi.org/10.1007/s10846-020-01307-9
  • Kermorgant, O., Chaumette, F., 2014. Dealing with constraints in sensor-based robot control. IEEE Transactions on Robotics 30 (1), 244-257. https://doi.org/10.1109/TRO.2013.2281560
  • Larouche, B. P., Zhu, Z. H., 2014. Autonomous robotic capture of noncooperative target using visual servoing and motion predictive control. Autonomous Robots 37, 157-167. https://doi.org/10.1007/s10514-014-9383-2
  • Muis, A., Ohnishi, K., 2004. Eye-to-hand approach on eye-in-hand configuration within real-time visual servoing. In: The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04. Vol. 10. pp. 647-652. https://doi.org/10.1109/AMC.2004.1297945
  • Muñoz-Salinas, R., 2018. Aruco library documentation. URL: https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/
  • Qiu, Z., Hu, S., Liang, X., 03 2018. Model predictive control for constrained image-based visual servoing in uncalibrated environments: Mpc for constrained ibvs in uncalibrated environments. Asian Journal of Control 21. https://doi.org/10.1002/asjc.1756
  • Robots, U., FZI, 2021. Universal robots ros driver. GitHub. URL: https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
  • Romero-Ramirez, F. J., Muñoz-Salinas, R., Medina-Carnicer, R., 2018. Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38-47. https://doi.org/10.1016/j.imavis.2018.05.004
  • Scherzinger, S., R¨onnau, A., Dillmann, R., 2019. Contact skill imitation learning for robot-independent assembly programming. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4309-4316. https://doi.org/10.1109/IROS40897.2019.8967523
  • SENER, G., 2021. Sirom standard interface for robotic manipulation. Youtube. URL: https://www.youtube.com/watch?v=uwpm_SOnYE8
  • SENER, G., 2022a. Ensayo de auto-acoplamiento de la interfaz robótica sirom. Youtube. URL: https://www.youtube.com/watch?v=eNaQr6CyfT8
  • SENER, G., 2022b. Standard interface for robotic manipulation (sirom) - datasheet. SENER Aeroespacial. URL: https://www.aeroespacial.sener/en/pdf-profile-project/standard-interface-for-robotic-manipulation-sirom
  • Vinals, J., Gala, J., Guerra, G., 2020. Standard interface for robotic manipulation (sirom): Src h2020 og5 final results-future upgrades and applications.
  • ViSP, 2022. Tutorial: How to boost your visual servo control law. Visual Servoing Platform. URL: https://visp-doc.inria.fr/doxygen/visp-3.5.0/tutorial-boost-vs.html
  • Zhang, Z., 1999. Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. Vol. 1. pp. 666-673. https://doi.org/10.1109/ICCV.1999.791289