Ladle furnace slags for construction and civil works: A promising reality
- Santamaría, A. 2
- Ortega-López, Vanesa 3
- Skaf, Marta 3
- Faleschini, F. 1
- Orbe, A. 2
- San-José, J.T. 2
-
1
University of Padua
info
-
2
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
-
3
Universidad de Burgos
info
Editorial: Woodhead Publishing
ISBN: 978-0-12-820549-5
Año de publicación: 2021
Páginas: 659-679
Tipo: Capítulo de Libro
Resumen
The iron and steelmaking industry is a key sector for global economic activity. It registers high levels of raw material and energy consumption and is responsible for approximately 5% of global CO2 emissions. Among many other wastes, it produces two slag types: reducing slag (white or basic slag from a ladle furnace or LFS) and oxidizing slag (black or acid slag from an Electric Arc Furnace or EAFS). LFS presents a powdery appearance and is reactive in water and cement matrices, unlike EAFS that appears stony and has high hardness and porosity indices. Focused on the reuse of “white slag” as a raw material in the construction industry, several studies are presented in this chapter on the partial substitution of fillers and hydraulic binders by this coproduct in the fine fractions of hydraulic mixes, active Portland cement admixtures, binders for the stabilization of clayey soils and, finally, fillers in bituminous mixes. It will henceforth be considered as a supplementary cementing material.
Referencias bibliográficas
- Adolfsson, (2011), Steel Res. Int., 82, pp. 398, 10.1002/srin.201000176
- Barrutia, (2015)
- Branca, (2009), Ironmak. Steelmak., 36, pp. 597, 10.1179/030192309X12492910937970
- Cedex, (2013)
- Circular Economy Package
- DESCLIMA Contract RTI2018-097079-B-C31—MCIU/AEI/FEDER, UE, (2019)
- Faleschini, (2015), Constr. Build. Mater., 101, pp. 113, 10.1016/j.conbuildmat.2015.10.022
- Faleschini, (2017), Mater. Struct., 50, 10.1617/s11527-017-1038-2
- Faleschini, (2019), Eng. Struct., 195, pp. 324, 10.1016/j.engstruct.2019.05.083
- Herrero, (2016), Constr. Build. Mater., 123, pp. 404, 10.1016/j.conbuildmat.2016.07.014
- Kim, (2012), J. Asian Archit. Build. Eng., 11, pp. 133, 10.3130/jaabe.11.133
- Maghool, (2016), J. Mater. Civ. Eng., 29, pp. 04016197, 10.1061/(ASCE)MT.1943-5533.0001724
- Manso, (2005), J. Mater. Civ. Eng., 17, pp. 513, 10.1061/(ASCE)0899-1561(2005)17:5(513)
- Manso, (2011), Constr. Build. Mater., 25, pp. 3508, 10.1016/j.conbuildmat.2011.03.044
- Manso, (2013), Constr. Build. Mater., 40, pp. 126, 10.1016/j.conbuildmat.2012.09.079
- Montenegro, (2013), J. Mater. Civ. Eng., 25, pp. 972, 10.1061/(ASCE)MT.1943-5533.0000642
- Montenegro-Cooper, (2019), Constr. Build. Mater., 203, pp. 201, 10.1016/j.conbuildmat.2019.01.040
- Nicolae, (2007), UPB Sci. Bull. Ser. B, 69, pp. 99
- Ortega-López, (2014), Constr. Build. Mater., 68, pp. 455, 10.1016/j.conbuildmat.2014.07.023
- Palacios, (1998)
- Pasquini, (2020), vol. 48, pp. 214
- Qian, (2002), Br. Ceram. Trans., 101, pp. 159, 10.1179/096797802225003415
- Santamaría, (2016), Constr. Build. Mater., 106, pp. 364, 10.1016/j.conbuildmat.2015.12.121
- Santamaría, (2018), Constr. Build. Mater., 161, pp. 94, 10.1016/j.conbuildmat.2017.11.121
- Santamaría, (2020), Ain Shams Eng. J., 11, pp. 231, 10.1016/j.asej.2019.10.001
- Setién, (2009), Constr. Build. Mater., 23, pp. 1788, 10.1016/j.conbuildmat.2008.10.003
- Skaf, (2016), Constr. Build. Mater., 122, pp. 488, 10.1016/j.conbuildmat.2016.06.085
- Skaf, (2017), Resour. Conserv. Recycl., 120, pp. 176, 10.1016/j.resconrec.2016.12.009
- Skaf, (2019), Materials, 12, 10.3390/ma12203306
- Tossavainen, (2007), Waste Manag., 27, pp. 1335, 10.1016/j.wasman.2006.08.002
- World Steel Association, (2019)
- World Steel Association, (2019)
- Yildirim, (2011), Adv. Civ. Eng., 2011, pp. 1, 10.1155/2011/463638