Comparison between milling roughing operations in full slotting manufacturing: trochoidal, plunge and conventional milling

  1. Gómez, G 1
  2. Fernández De Lucio, P 1
  3. Del Olmo, A 1
  4. Martínez De Pissón, G 1
  5. Jimeno, A 1
  6. González, H 1
  7. López De Lacalle, L N 11
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revista:
IOP Conference Series: Materials Science and Engineering

ISSN: 1757-8981 1757-899X

Año de publicación: 2021

Volumen: 1193

Número: 1

Páginas: 012003

Tipo: Artículo

DOI: 10.1088/1757-899X/1193/1/012003 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: IOP Conference Series: Materials Science and Engineering

Resumen

Manufacturing improvements in terms of manufacturing-chain costs and times reduction are becoming a real need in the industry, especially for roughing operations. To satisfy these industrial requirements, more efficient machining processes have been developed, such as High Efficiency Milling (HEM). According to the above mentioned direction, trochoidal milling appears as an efficient method for roughing operations of full slots. This work presents an analysis in terms of production time between conventional, plunge and trochoidal milling to determine which process configuration is more productive.

Referencias bibliográficas

  • Dewes, (1997), Journal of Material Processing Technology, 69, pp. 1, 10.1016/S0924-0136(96)00042-8
  • López de Lacalle, (2002), International Journal of Production Research, 40, pp. 2789, 10.1080/00207540210140068
  • Pawade, (2011), International Journal Advanced Manufacturing Technology, 56, pp. 47, 10.1007/s00170-011-3183-z
  • Toh, (2003), Proceedings of The Institution of Mechanical Engineers Part B-journal of Engineering Manufacture, 217, pp. 517, 10.1243/095440503322420223
  • Pleta, (2015), Procedia Manufacturing, 1, pp. 556, 10.1016/j.promfg.2015.09.032
  • Deng, (2018), The International Journal of Advanced Manufacturing Technology, 95, pp. 3001, 10.1007/s00170-017-1353-3
  • Li, (2020), Computer-Aided Design, 119, pp. 102775, 10.1016/j.cad.2019.102775
  • Rauch, (2009), International Journal of Machine Tools and Manufacture, 49, pp. 375, 10.1016/j.ijmachtools.2008.12.006
  • Wang, (2016), International Journal of Production Research, 54, pp. 5976, 10.1080/00207543.2016.1143135
  • Otkur, (2007), International Journal of Machine Tools & Manufacture, 47, pp. 1324, 10.1016/j.ijmachtools.2006.08.002
  • Yan, (2017), Journal of Manufacturing Science and Engineering, 139, 10.1115/1.4036784
  • Kardes, (2007), Journal of Manufacturing Science and Engineering, 129, 10.1115/1.2345391
  • Wu, (2016), Journal of Material Processing Technology, 233, pp. 29, 10.1016/j.jmatprotec.2016.01.033
  • Witty, (2012), Procedia CIRP, 1, pp. 506, 10.1016/j.procir.2012.04.090
  • Zhuang, (2013), Journal of Materials Processing Technology, 213, pp. 1378, 10.1016/j.jmatprotec.2013.03.007
  • Wakaoka, (2009), Journal of Materials Processing Technology, 127, pp. 246, 10.1016/S0924-0136(02)00151-6
  • Li, (2000), The International Journal of Advanced Manufacturing Technology, 16, pp. 863, 10.1007/s001700070003
  • Ko, (2007), International Journal of Machine Tools and Manufacture, 47, pp. 1351, 10.1016/j.ijmachtools.2006.08.007
  • Altintas, (2006), CIRP Annals, 55, pp. 361, 10.1016/S0007-8506(07)60435-1