Comparison of an island wind turbine collective and individual pitch LQG controllers designed to alleviate fatigue loads

  1. Camblong, H. 12
  2. Nourdine, S. 12
  3. Vechiu, I. 2
  4. Tapia, G. 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  2. 2 École Supérieure des Technologies Industrielles Avancées
    info

    École Supérieure des Technologies Industrielles Avancées

    Bidarte, Francia

    ROR https://ror.org/008kvxw43

Revista:
IET Renewable Power Generation

ISSN: 1752-1416 1752-1424

Año de publicación: 2012

Volumen: 6

Número: 4

Páginas: 267-275

Tipo: Artículo

DOI: 10.1049/IET-RPG.2011.0072 WoS: WOS:000314403600007 GOOGLE SCHOLAR

Otras publicaciones en: IET Renewable Power Generation

Objetivos de desarrollo sostenible

Resumen

This study aims to analyse different linear quadratic Gaussian (LQG) controllers' performances in terms of reducing the fatigue load of wind turbines' (WT) most costly components caused by the spatial turbulence of wind speed. Five LQGs with increasing control model complexity and a greater number of objectives are designed, the first four with collective pitch control (CPC), and the fifth with individual pitch control (IPC). In the design of the controllers, firstly a linear control model is obtained in the operating point corresponding to a wind speed of 18 m/s. Then, the Kalman filter (KF) and the rest of the controller are tuned with simulations in order to obtain the lowest possible fatigue loads while respecting certain generator power and speed variation limits. Finally, the five controllers are tested with processor-in-the-loop (PIL). Fatigue loads are evaluated by rainflow counting algorithm and then applying the Palmgren–Miner rule. Tests results show that drive-train loads are significantly reduced from LQG1_CPC, that the complexity of the controllers does not have a significant influence on the reduction of tower loads, and that LQG3_IPC allows fatigue loads on blades to be alleviated considerably.

Referencias bibliográficas

  • 10.1049/iet-rpg.2008.0060
  • 10.1016/j.paerosci.2009.08.002
  • 10.1049/iet-rpg.2007.0132
  • 10.1109/TEC.2008.917102
  • 10.1109/TEC.2010.2048216
  • Camblong, H., and Tapia, G.: ‘Digital robust control of a variable-speed pitch-regulated wind turbine’, Szentannai, P., ‘Power plant applications of advanced control technique’ (ProcessEng Engineering GmbH, Vienna, Austria, 2010)
  • Trudnowski, Proc. 2002 American Control Conf., 6, pp. 4335
  • Leithead, (MED 2009), 2009 17th Mediterranean Conf. on Control and Automation, pp. 1257, 10.1109/MED.2009.5164719
  • Jelavic, (2008), Annual Conf. of IEEE. Industrial Electronics, IECON 2008, pp. 228, 10.1109/IECON.2008.4757957
  • Bossanyi, (2009), Mediterranean Conf. on Control and Automation, MED 2009, pp. 1269, 10.1109/MED.2009.5164721
  • Alan, (2009), Seventeenth Mediterranean Conf. on Control and Automation, MED 09, pp. 1275
  • ‘Controller for 5 MW reference turbine’, Report, Garrad Hassan and Partners Limited, 10 July 2009
  • 10.1002/we.76
  • 10.1002/we.332
  • Wright, (2011), AIAA Aerospace Sciences Meeting
  • Lescher, (2006), IEEE Int. Conf. on Industrial Technology, ICIT 2006, pp. 654, 10.1109/ICIT.2006.372245
  • 10.1016/0142-1123(87)90054-5
  • Downey, R.P.: ‘Uncertainty in wind turbine life equivalent load due to variation of site conditions’, 19 May 2006, Thesis Project, Technical University of Denmark, Fluid Mechanics Section
  • ‘Active control: wind turbine model’, Technical report RISO-R-920(EN), Risø National Laboratory, (1999), Roskilde, Denmark, 1999,
  • Ashish, T.: ‘Kalman filters’, E-Book: Modern control design with Matlab®and Simulink®, (John Wiley & Sons, Inc., February 2002 p. 323–371