Comparison of an island wind turbine collective and individual pitch LQG controllers designed to alleviate fatigue loads
- Camblong, H. 12
- Nourdine, S. 12
- Vechiu, I. 2
- Tapia, G. 1
-
1
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
-
2
École Supérieure des Technologies Industrielles Avancées
info
École Supérieure des Technologies Industrielles Avancées
Bidarte, Francia
ISSN: 1752-1416, 1752-1424
Año de publicación: 2012
Volumen: 6
Número: 4
Páginas: 267-275
Tipo: Artículo
Otras publicaciones en: IET Renewable Power Generation
Resumen
This study aims to analyse different linear quadratic Gaussian (LQG) controllers' performances in terms of reducing the fatigue load of wind turbines' (WT) most costly components caused by the spatial turbulence of wind speed. Five LQGs with increasing control model complexity and a greater number of objectives are designed, the first four with collective pitch control (CPC), and the fifth with individual pitch control (IPC). In the design of the controllers, firstly a linear control model is obtained in the operating point corresponding to a wind speed of 18 m/s. Then, the Kalman filter (KF) and the rest of the controller are tuned with simulations in order to obtain the lowest possible fatigue loads while respecting certain generator power and speed variation limits. Finally, the five controllers are tested with processor-in-the-loop (PIL). Fatigue loads are evaluated by rainflow counting algorithm and then applying the Palmgren–Miner rule. Tests results show that drive-train loads are significantly reduced from LQG1_CPC, that the complexity of the controllers does not have a significant influence on the reduction of tower loads, and that LQG3_IPC allows fatigue loads on blades to be alleviated considerably.
Referencias bibliográficas
- 10.1049/iet-rpg.2008.0060
- 10.1016/j.paerosci.2009.08.002
- 10.1049/iet-rpg.2007.0132
- 10.1109/TEC.2008.917102
- 10.1109/TEC.2010.2048216
- Camblong, H., and Tapia, G.: ‘Digital robust control of a variable-speed pitch-regulated wind turbine’, Szentannai, P., ‘Power plant applications of advanced control technique’ (ProcessEng Engineering GmbH, Vienna, Austria, 2010)
- Trudnowski, Proc. 2002 American Control Conf., 6, pp. 4335
- Leithead, (MED 2009), 2009 17th Mediterranean Conf. on Control and Automation, pp. 1257, 10.1109/MED.2009.5164719
- Jelavic, (2008), Annual Conf. of IEEE. Industrial Electronics, IECON 2008, pp. 228, 10.1109/IECON.2008.4757957
- Bossanyi, (2009), Mediterranean Conf. on Control and Automation, MED 2009, pp. 1269, 10.1109/MED.2009.5164721
- Alan, (2009), Seventeenth Mediterranean Conf. on Control and Automation, MED 09, pp. 1275
- ‘Controller for 5 MW reference turbine’, Report, Garrad Hassan and Partners Limited, 10 July 2009
- 10.1002/we.76
- 10.1002/we.332
- Wright, (2011), AIAA Aerospace Sciences Meeting
- Lescher, (2006), IEEE Int. Conf. on Industrial Technology, ICIT 2006, pp. 654, 10.1109/ICIT.2006.372245
- 10.1016/0142-1123(87)90054-5
- Downey, R.P.: ‘Uncertainty in wind turbine life equivalent load due to variation of site conditions’, 19 May 2006, Thesis Project, Technical University of Denmark, Fluid Mechanics Section
- ‘Active control: wind turbine model’, Technical report RISO-R-920(EN), Risø National Laboratory, (1999), Roskilde, Denmark, 1999,
- Ashish, T.: ‘Kalman filters’, E-Book: Modern control design with Matlab®and Simulink®, (John Wiley & Sons, Inc., February 2002 p. 323–371