Shape Memory Hydrogels Based on Noncovalent Interactions

  1. Ruiz-Rubio, Leire 11
  2. Pérez-Álvarez, Leyre 11
  3. Artetxe, Beñat 1
  4. Gutiérrez-Zorrilla, Juan M. 11
  5. Vilas, José Luis 11
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Libro:
Shape-Memory Materials

Editorial: IntechOpen

ISBN: 978-1-78923-682-8 978-1-83881-771-8

Año de publicación: 2018

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.78013 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Shape memory polymers (SMPs) are polymeric materials that are capable of fixing temporary shape and recovering the permanent shape in response to external stimuli. In particular, supramolecular interactions and dynamic covalent bond have recently been introduced as temporary switches to construct supramolecular shape memory hydrogels (SSMHs), arising as promising materials since they can exhibit excellent cycled shape memory behavior at room temperature. On the other hand, hydrogels, conventionally, are flexible but sometimes extremely soft, and they can be easily damaged under external force, which could limit their long-time application. Therefore, self-healing hydrogels that can be rapidly auto-repaired when the damage occurs have been recently developed to solve this problem. These materials present more than one triggering stimulus that can be used to induce the shape memory and self-healing effect. These driven forces can be originated from hydrogen bonds, hydrophobic interactions, and reversible covalent bonds, among others. Beyond all these, hybrid organic-inorganic interactions represent an interesting possibility due to their versatility and favorable properties that allow the fabrication of multiresponsive hydrogels. In this chapter, shape memory hydrogels based on noncovalent interactions are described.

Referencias bibliográficas

  • Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AICHE Journal. 2003;49:2990-3006. DOI: 10.1002/aic.690491202
  • Gupta P, Vermani K, Garg S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discovery Today. 2002;7:569-579. DOI: 10.1016/S1359-6446(02)02255-9
  • Richter AA, Paschew G, Klatt S, Lienig J, Arndt KF, HJP A. Review on hydrogel-based pH sensors and microsensors. Sensors. 2008;8:561-581. DOI: 10.3390/s8010561
  • Gyarmati B, Szilágyi BA, Szilágyi A. Reversible interactions in self-healing and shape memory hydrogels. European Polymer Journal. 2017;93:642-669. DOI: 10.1016/j.eurpolymj.2017.05.020
  • Taylor DL. in het Panhuis M. Self-Healing Hydrogels. Adv. Maternité. 2016;8:9060-9093. DOI: 10.1002/adma.201601613
  • Löwenberg C, Balk M, Wischke C, Behl M, Lendlein A. Shape-memory hydrogels: Evolution of structural principles to enable shape switching of hydrophilic polymer networks. Accounts of Chemical Research. 2017;50:723-732. DOI: 10.1021/acs.accounts.6b00584
  • Zhao Q, Qi HJ, Xie T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science. 2015;49-50:79-120. DOI: 10.1016/j.progpolymsci.2015.04.001
  • Hu J, Zhu Y, Huang H, Lu J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Progress in Polymer Science. 2012;7:1720-1763. DOI: 10.1016/j.progpolymsci.2012.06.001
  • Li G, Zhang H, Fortin D, Xia H, Zhao Y. Poly(vinyl alcohol)–poly(ethylene glycol) double-network hydrogel: A general approach to shape memory and self-healing functionalities. Langmuir. 2015;31:11709-11716. DOI: 10.1021/acs.langmuir.5b03474
  • Habault D, Zhang H, Zhao Y. Light-triggered self-healing and shape-memory polymers. Chemical Society Reviews. 2013;2:7244. DOI: 10.1039/c3cs35489j
  • Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. Journal of Materials Chemistry. 2007;17:1543. DOI: 10.1039/b615954k
  • Han Y, Bai T, Liu Y, Zhai X, Liu W. Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromolecular Rapid Communications. 2012;33:225-231. DOI: 10.1002/marc.201100683
  • Xiao YY, Gong XL, Kang Y, Jiang ZC, Zhang S, Li BJ. Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chemical Communications. 2016;52:10609-10612. DOI: 10.1039/C6CC03587F
  • Zhang H, Zhao Y. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Applied Materials & Interfaces. 2013;5:13069-13075. DOI: 10.1021/am404087q
  • Ratna D, Karger-Kocsis J. Recent advances in shape memory polymers and composites: A review. Journal of Materials Science. 2008;43:254-269. DOI: 10.1007/s10853-007-2176-7
  • Bilici C, Can V, Nöchel U, Behl M, Lendlein A, Okay O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules. 2016;49:7442-7449. DOI: 10.1021/acs.macromol.6b01539
  • Miyamae K, Nakahata M, Takashima Y, Harada A. Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angewandte Chemie International Edition. 2015;54:8984-8987. DOI: 10.1002/anie.201502957
  • Fan Y, Zhou W, Yasin A, Li H, Yang H. Dual-responsive shape memory hydrogels with novel thermoplasticity based on a hydrophobically modified polyampholyte. Soft Matter. 2015;11:4218-4225. DOI: 10.1039/C5SM00168D
  • Li Z, Lu W, Ngai T, Le X, Zheng J, Zhao N, Huang Y, Wen X, Zhang J, Chen T. Mussel-inspired multifunctional supramolecular hydrogels with self-healing, shape memory and adhesive properties. Polymer Chemistry. 2016;7:5343-5346. DOI: 10.1039/C6PY01112H
  • Nieuwenhuizen MML, TFA DG, Der Bruggen RLJ V, Paulusse JMJ, Appel WPJ, Smulders MMJ, Sijbesma RP, Meijer EW. Self-assembly of ureido-pyrimidinone dimers into one-dimensional stacks by lateral hydrogen bonding. Chemistry – A European Journal. 2010;16:1601-1612. DOI: 10.1002/chem.200902107
  • Chen H, Li Y, Tao G, Wang L, Zhou S. Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polymer Chemistry. 2016;7:6637-6644. DOI: 10.1039/C6PY01302C
  • Zhang G, Chen Y, Deng Y, Ngai T, Wang C. Dynamic supramolecular hydrogels: Regulating Hydrogel properties through self-complementary quadruple hydrogen bonds and thermo-switch. ACS Macro Letters. 2017;6:641-646. DOI: 10.1021/acsmacrolett.7b00275
  • Xu B, Zhang Y, Liu W. Hydrogen-bonding toughened hydrogels and emerging CO2 -responsive shape memory effect. Macromolecular Rapid Communications. 2015;36:1585-1591. DOI: 10.1002/marc.201500256
  • Chen YN, Peng L, Liu T, Wang Y, Shi S, Wang H. Poly(vinyl alcohol)-tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Applied Materials & Interfaces. 2016;8:27199-27206. DOI: 10.1021/acsami.6b08374
  • Skrzeszewska PJ, Jong LN, de Wolf FA, Cohen Stuart MA, van der Gucht J. Shape-memory effects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 2011;12:2285-2292. DOI: 10.1021/bm2003626
  • Huang J, Zhao L, Wang T, Sun W, Tong Z. NIR-triggered rapid shape memory PAM–GO–gelatin hydrogels with high mechanical strength. ACS Applied Materials & Interfaces. 2016;8:12384-12392. DOI: 10.1021/acsami.6b00867
  • Guo W, Lu CH, Orbach R, Wang F, Qi XJ, Cecconello A, Seliktar D, Willner I. pH-stimulated DNA hydrogels exhibiting shape-memory properties. Advanced Materials. 2015;27:73-78. DOI: 10.1002/adma.201403702
  • Hu Y, Lu CH, Guo W, Aleman-Garcia MA, Ren J, Willner I. A shape memory acrylamide/DNA hydrogel exhibiting switchable dual pH-responsiveness. Advanced Functional Materials. 2015;25:6867-6874. DOI: 10.1002/adfm.201503134
  • Hu Y, Guo W, Kahn JS, Aleman-Garcia MA, Willner I. A shape-memory DNA-based hydrogel exhibiting two internal memories. Angewandte Chemie International Edition. 2016;55:4210-4214. DOI: 10.1002/anie.201511201
  • Lu CH, Guo W, Hu Y, Qi XJ, Willner I. Multitriggered shape-memory acrylamide–DNA hydrogels. Journal of the American Chemical Society. 2015;137:15723-15731. DOI: 10.1021/jacs.5b06510
  • Strandman S, Zhu XX. Self-healing supramolecular hydrogels based on reversible physical interactions. Gels. 2016;2:16. DOI: 10.3390/gels2020016
  • Webber MJ, Langer R. Drug delivery by supramolecular design. Chemical Society Reviews. 2017;46:6600-6620. DOI: 10.1039/C7CS00391A
  • Sliwa W, Girek T. CD-based rotaxanes and polyrotaxanes as representative supramolecules. In: Sliwa W, Girek T, editors. Cyclodextrins. Weinhenim: Wiley-VCH Verlag; 2017. pp. 9-50. DOI: 10.1002/9783527695294.ch1
  • Feng W, Zhou W, Dai Z, Yasin A, Yang H. Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. Journal of Materials Chemistry B. 2016;4:1924-1931. DOI: 10.1039/C5TB02737C
  • Cai T, Huo S, Wang T, Sun W, Tong Z. Self-healable tough supramolecular hydrogels crosslinked by poly-cyclodextrin through host-guest interaction. Carbohydrate Polymers. 2018;193:54-61. DOI: 10.1016/j.carbpol.2018.03.039
  • Dong ZQ, Cao YY, Yuan QJ, Wang YF, Li JH, Li BJ, Zhang S. Redox- and glucose-induced shape-memory polymers. Macromolecular Rapid Communications. 2013;34:867-872. DOI: 10.1002/marc.201300084
  • Han XJ, Dong ZQ, Fan MM, Liu Y, Li JH, Wang YF, Yuan QJ, Li BJ, Zhang S. pH-induced shape-memory polymers. Macromolecular Rapid Communications. 2012;33:1055-1060. DOI: 10.1002/marc.201200153
  • Zhang T, Silverstein MS. Doubly-crosslinked, emulsion-templated hydrogels through reversible metal coordination. Polymer. 2017;126:386-394. DOI: 10.1016/j.polymer.2017.07.044
  • Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability. Macromolecules. 2016;49:9637-9646. DOI: 10.1021/acs.macromol.6b02150
  • Le X, Zhang Y, Lu W, Wang L, Zheng J, Ali I, Zhang J, Huang Y, Serpe MJ, Yang X, Fan X, Chen T. A novel anisotropic hydrogel with integrated self-deformation and controllable shape memory effect. Macromolecular Rapid Communications. 2018:1800019. DOI: 10.1002/marc.201800019
  • Harris RD, Auletta JT, Motlagh SAM, Lawless MJ, Perri NM, Saxena S, Weiland LM, Waldeck DH, Clark WW, Meyer TY. Chemical and electrochemical manipulation of mechanical properties in stimuli-responsive copper-cross-linked hydrogels. ACS Macro Letters. 2013;2:1095-1099. DOI: 10.1021/mz4004997
  • Nan W, Wang W, Gao H, Liu W. Fabrication of a shape memory hydrogel based on imidazole–zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter. 2013;9:132-137. DOI: 10.1039/C2SM26918J
  • Feng W, Zhou W, Zhang S, Fan Y, Yasin A, Yang H. UV-controlled shape memory hydrogels triggered by photoacid generator. RSC Advances. 2015;5:81784-81789. DOI: 10.1039/C5RA14421C
  • Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z. Highly stretchable and tough hydrogels. Nature. 2012;489:133-136. DOI: 10.1038/nature11409
  • Meng H, Xiao P, Gu J, Wen X, Xu J, Zhao C, Zhang J, Chen T. Self-healable macro−/microscopic shape memory hydrogels based on supramolecular interactions. Chemical Communications. 2014;50:12277-12280. DOI: 10.1039/C4CC04760E
  • Yasin A, Li H, Lu Z, ur Rehman S, Siddiq M, Yang H. A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter. 2014;10:972-977. DOI: 10.1039/C3SM52666F
  • Si Y, Wang L, Wang X, Tang N, Yu J, Ding B. Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Advanced Materials. 2017;29:1700339. DOI: 10.1002/adma.201700339
  • Ren Z, Zhang Y, Li Y, Xu B, Liu W. Hydrogen bonded and ionically crosslinked high strength hydrogels exhibiting Ca2+ −triggered shape memory properties and volume shrinkage for cell detachment. Journal of Materials Chemistry B. 2015;3:6347-6354. DOI: 10.1039/C5TB00781J
  • Zhang Y, Liao J, Wang T, Sun W, Tong Z. Polyampholyte hydrogels with pH modulated shape memory and spontaneous actuation. Advanced Functional Materials. 2018:1707245. DOI: 10.1002/adfm.201707245
  • Pu W, Jiang F, Chen P, Wei B. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction. Soft Matter. 2017;13:5645-5648. DOI: 10.1039/C7SM01492A
  • Zhang Y, Yang B, Zhang X, Xu L, Tao L, Li S, Wei Y. A magnetic self-healing hydrogel. Chemical Communications. 2012;48:9305. DOI: 10.1039/c2cc34745h
  • Wei H, Du S, Liu Y, Zhao H, Chen C, Li Z, Lin J, Zhang Y, Zhang J, Wan X. Tunable, luminescent, and self-healing hybrid hydrogels of polyoxometalates and triblock copolymers based on electrostatic assembly. Chemical Communications. 2014;50:1447-1450. DOI: 10.1039/C3CC48732F
  • Xiao H, Lu W, Le X, Ma C, Li Z, Zheng J, Zhang J, Huang Y, Chen T. A multi-responsive hydrogel with a triple shape memory effect based on reversible switches. Chemical Communications. 2016;52:13292-13295. DOI: 10.1039/C6CC06813H
  • Zhang J, Chen T. A multiple shape memory hydrogel induced by reversible physical interactions at ambient condition. Polymer. 2017;9:138. DOI: 10.3390/polym9040138
  • Le X, Lu W, Xiao H, Wang L, Ma C, Zhang J, Huang Y, Chen T. Fe3+-, pH-, thermoresponsive supramolecular hydrogel with multishape memory effect. ACS Applied Materials & Interfaces. 2017;9:9038-9044. DOI: 10.1021/acsami.7b00169
  • Le X, Lu W, Zheng J, Tong D, Zhao N, Ma C, Xiao H, Zhang J, Huang Y, Chen T. Stretchable supramolecular hydrogels with triple shape memory effect. Chemical Science. 2016;7:6715-6720. DOI: 10.1039/C6SC02354A