Modelos animales de carcinoma hepatocelular y sus aplicaciones en biomedicina
ISSN: 1988-3021
Año de publicación: 2020
Número: 18
Páginas: 19-30
Tipo: Artículo
Otras publicaciones en: AmbioCiencias: revista de divulgación
Resumen
El carcinoma hepatocelular (CHC) es la segunda causa de muerte por cáncer en todo el mundo y el subtipo histológico más común cáncer primario de hígado. Teniendo este escenario en consideración, los modelos animales de CHC son esenciales para entender la enfermedad a nivel molecular, para el desarrollo de nuevas vías de tratamiento y para la realización de ensayos preclínicos. La presente revisión se centra en las características de los modelos animales químicamente inducidos, de implantación y de los modelos animales de enfermedad de hígado graso no alcohólico/esteatohepatitis no alcohólica (NAFLD/NASH). Además, dado que los métodos de detección identifican el CHC en etapas tardías, su naturaleza asintomática en etapas tempranas y su refractariedad a casi todas las terapias actuales, las nuevas líneas de investigación junto con las nuevas y actuales vías de tratamiento también se discuten en esta revisión.
Referencias bibliográficas
- Asgharpour, A., Cazanave, S. C., Pacana, T., Seneshaw, M., Vincent, R., Banini, B. A., Kumar, D. P., Daita, K., Min, H. K., Mirshahi, F., et al. 2016. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cáncer. Journal of Hepatology, 65:579-588
- Baba, H., Tsuneyama, K., Nishida, T., Hatta, H., Nakajima, T., Nomoto, K., Hayashi, S.,Miwa, S., Nakanishi, Y., Hokao, R. e Imura, J. 2014. Neonatal streptozotocin treatment causes type 1 diabetes and subsequent hepatocellular carcinoma in DIAR mice fed a normal diet. Hepatology International, 8:415-424
- Beyoğlu, D. e Idle, J. R. 2020. Metabolomic and lipidomic biomarkers for premalignant liver disease diagnosis and therapy. Metabolites, 10:50
- Caviglia J.M. y Schwabe R.F. 2015. Mouse Models of Liver Cancer, en Eferl R. y Casanova E. (eds.) Mouse Models of Cancer. New York: Humana Press, pp. 165-183.
- De Minicis, S., Kisseleva, T., Francis, H., Baroni, G. S., Benedetti, A., Brenner, D., Alvaro, D., Alpini, G. y Marzioni, M. 2013. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Digestive and Liver Disease, 45:450-459
- Fang, D., Xiong, Z., Xu, J., Yin, J. y Luo, R. 2019. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: a review. Biomedicine and Pharmacotherapy, 109:2054-2061
- Fernández-Palanca, P., Fondevila, F., Méndez-Blanco, C., Tuñón, M. J., González-Gallego, J. y Mauriz, J. L. 2019. Antitumor effects of quercetin in hepatocarcinoma in vitro and in vivo models: a systematic review. Nutrients, 11:2875
- Fernández-Varo, G., Perramón, M., Carvajal, S., Oró, D., Casals, E., Boix, L., Oller, L., Macías-Muñoz, L., Marfá, S., Casals, et al. 2020. Bespoken nanoceria: a new effective treatment in experimental hepatocellular carcinoma. Hepatology, 72:1267-1282
- García, E. R., Gutierrez, E. A., Melo, F. C. S. A. D., Novaes, R. D. y Gonçalves, R.V. 2018. Flavonoids effects on hepatocellular carcinoma in murine models: a systematic review. Evidence-Based Complementary and Alternative Medicine, 28:6328970
- Gong, Z. G., Zhao, W., Zhang, J., Wu, X., Hu, J., Yin, G. C. y Xu, Y. J. 2017. Metabolomics and eicosanoid analysis identified serum biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus- related cirrhosis. Oncotarget, 8:63890-63900
- Guo, W., Tan, H. Y., Wang, N., Wang, X. y Feng, Y. 2018. Deciphering hepatocellular carcinoma through metabolomics: from biomarker discovery to therapy evaluation. Cancer Management and Research, 10:715-734
- He, L., Tian, D. A., Li, P. Y. y He, X. X. 2015. Mouse models of liver cancer: progress and recommendations. Oncotarget, 6:23306-23322
- Heindryckx, F., Colle, I. y Van Vlierberghe, H. 2009. Experimental mouse models for hepatocellular carcinoma research. International Journal of Experimental Pathology, 90:367-386
- Henderson, J. M., Zhang, H. E., Polak, N. y Gorrell, M. D. 2017. Hepatocellular carcinoma: mouse models and the potential roles of proteases. Cancer Letters, 387:106-113
- Hu, T., Sun, D., Zhang, J., Xue, R., Janssen, H. L., Tang, W. y Dong, L. 2018. Spermine oxidase is upregulated and promotes tumor growth in hepatocellular carcinoma Hepatology Research, 48:967-977
- Jacobs, A., Warda, A. S., Verbeek, J., Cassiman, D. y Spincemaille, P. 2016. An overview of mouse models of nonalcoholic steatohepatitis: from past to present. Current Protocols in Mouse Biology, 6:185- 200
- Jung, J. 2014. Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicological Research, 30:1-5
- Lau, J. K. C., Zhang, X. y Yu, J. 2017. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. The Journal of Pathology, 241:36-44
- de Lima, V. M., Oliveira, C. P., Alves, V. A., Chammas, M. C., Oliveira, E. P., Stefano, J. T., de Mello, E. S., Cerri, G. G., Carrilho, F. J. y Caldwell, S. H. 2008. A rodent model of NASH with cirrhosis, oval cell proliferation and hepatocellular carcinoma. Journal of Hepatology, 49:1055-1061
- Mazzanti, R., Gramantieri, L. y Bolondi, L. 2008. Hepatocellular carcinoma: epidemiology and clinical aspects. Molecular Aspects of Medicine, 29:130-143
- McGlynn, K. A., Hunter, K., LeVoyer, T., Roush, J., Wise, P., Michielli, R. A., Shen, F. M., Evans, A. A., London, W. T. y Buetow, K. H. 2003. Susceptibility to aflatoxin B1-related primary hepatocellular carcinoma in mice and humans. Cancer Research, 63:4594-4601
- Newell, P., Villanueva, A., Friedman, S. L., Koike, K. y Llovet, J. M. 2008. Experimental models of hepatocellular carcinoma. Journal of Hepatology, 48:858-879
- Rao, Q., You, A., Guo, Z., Zuo, B., Gao, X., Zhang, T., Du, Z., Wu, C. y Yin, H. F. 2016. Intrahepatic tissue implantation represents a favorable approach for establishing orthotopic transplantation hepatocellular carcinoma mouse models. PLoS ONE, 11:1-12
- Santos, N. P., Colaço, A. A. y Oliveira, P. A. 2017. Animal models as a tool in hepatocellular carcinoma research: a review. Tumor Biology, 39: 1-20
- Sasaki, R., Kanda, T., Fujisawa, M., Matsumoto, N., Masuzaki, R., Ogawa, M., Matsuoka, S., Kuroda, K. y Moriyama, M. 2020. Different mechanisms of action of regorafenib and lenvatinib on toll-like receptor- signaling pathways in human hepatoma cell lines. International Journal of Molecular Sciences, 21:3349
- Shankaraiah, R. C., Gramantieri, L., Fornari, F., Sabbioni, S., Callegari, E. y Negrini, M. Animal models of hepatocellular carcinoma prevention. Cancers, 11:1-15
- Stefaniuk, P., Cianciara, J. y Wiercinska-Drapalo, A. 2010. Present and future possibilities for early diagnosis of hepatocellular carcinoma. World Journal of Gastroenterology, 16:418-424
- Takahashi, T., Nishida, T., Baba, H., Hatta, H., Imura, J., Sutoh, M., Toyohara, S., Hokao, R., Watanabe, S., Ogawa, et al. 2016. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse). Molecular and Clinical Oncology, 5:267-270
- Tsuchida, T., Lee, Y. A., Fujiwara, N., Ybanez, M., Allen, B., Martins, S., Fiel, M. I., Goossens, N., Chou, H. I., Hoshida, Y. y Friedman, S. L. 2018. A simple diet-and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. Journal of Hepatology, 69:385-395
- Tsuneyama, K., Nishitsuji, K., Matsumoto, M., Kobayashi, T., Morimoto, Y., Tsunematsu, T. y Ogawa, H. 2017. Animal models for analyzing metabolic syndrome-associated liver diseases. Pathology International, 67:539-546
- Wu, J. 2016. Utilization of animal models to investigate nonalcoholic steatohepatitisassociated hepatocellular carcinoma. Oncotarget, 7:42762-42776
- Zhang, H. E., J.M. y Gorrell, M. D. 2019. Animal models for hepatocellular carcinoma. Biochimica et Biophysica Acta (BBA)- Molecular Basis of Disease, 1865:993-1002
- Zhong, F., Zhou, X., Xu, J. y Gao, L. 2020. Rodent models of nonalcoholic fatty liver disease. Digestion, 101:522-535