Growth and characterization of an all solid-state high voltage Li-ion thin film battery

  1. Madinabeitia Terrones, Iñaki
Dirigida por:
  1. Francisco José Fernández Carretero Director/a
  2. Miguel Ángel Muñoz Márquez Director/a

Universidad de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 27 de enero de 2022

Tribunal:
  1. Flaviano García Alvarado Presidente/a
  2. Idoia Ruiz de Larramendi Secretaria
  3. Marta Brizuela Parra Vocal

Tipo: Tesis

Teseo: 156949 DIALNET lock_openADDI editor

Resumen

All solid-state Li-ion batteries present key technological advantages that position them as a promising alternative to State-of-the-Art liquid electrolyte-based batteries, namely a wider electrochemical stability window, low toxicity, and hindered Li dentrite formation. These directly impact on the energy density, environmentally friendliness and safety, respectively. Importantly, all solid-state configurations also allow downscaling the whole battery to micrometric thin film components, paving the way towards the fabrication of compact microbatteries for low power energy supply. In this thesis, an all solid-state high voltage Li-ion thin film battery comprised of LiNi0.5Mn1.5O4 cathode, a LiPON solid electrolyte, and a metallic lithium anode has been developed, supported on high-value stainless steel current collector substrates. Growing parameters, individual film properties and issues related to the internal solid-solid interfaces are deeply analyzed.