Copolímeros de poliuretano del tipo poli[(hexametilencarbamatobutanodiol)- co-(carbonato-co-éster)]

  1. Fernández-d'Arlas, Borja 1
  2. Corcuera, Maria Angeles 1
  3. Eceiza, Arantxa 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Aldizkaria:
Revista ION: Investigación, Optimización y Nuevos Procesos en Ingeniería

ISSN: 2145-8480 0120-100X

Argitalpen urtea: 2016

Zenbakien izenburua: Revista ION

Alea: 29

Zenbakia: 2

Orrialdeak: 61-74

Mota: Artikulua

DOI: 10.18273/REVION.V29N2-2016005 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Revista ION: Investigación, Optimización y Nuevos Procesos en Ingeniería

Laburpena

Segmented thermoplastic polyurethane elastomers (PUSTE) comprise a family of very versatile materials with large potential for their applicability in different fields such as biomedicine. Among the PUSTEs the ones formed by polycarbonates diols and aliphatic diisocyanates are especially attractive due to their bioestability and biocompativility. In this work we present the results of morphological and mechanical characterization of different PUSTEs formed by 1,6-hexamethyene diisocyanate, 1,4-butanediol and a copolymer of polycaprolactone and polyhexamethylene carbonate diol, PCL-b-PHMC-b-PCL, synthesized with different ratios between rigid (HDI-BD) segments and the rubbery copolymer.

Erreferentzia bibliografikoak

  • Referencias [1] Ugarte L, Saralegi A, Fernández R, Martín L, Corcuera MA, Eceiza A. Flexible polyurethane foams based on 100% renewably sourced polyols. Ind. Crop Prod. 2014;62(1):545-51.
  • [2] Mazo PC, Franco A, Ríos LA, Restrepo G. Obtención de espumas flexibles de poliuretano apartir de aceites de palma y castor modificados.Scientia et Technica, 2007;XIII(36):607-11.
  • [3] Padrón-Gamboa G, Arias-Marín EM, Romero-García J, Benavides-Mendoza A, Zamora-Rodríguez J, García-Rodríguez SP. Efecto de la cáscara de cacao en la obtención de espumas de poliuretano para uso hortícola. Propiedades físicas y de biodegradabilidad. Rev. Soc. Quím. Méx. 2004;48(2):156-64.
  • [4] Rangel NA, de Alva HE, Romero J, Rivera JL, Álvarez A, García E. Síntesis y caracterización de materiales reforzados (“composites”) de poliuretano poroso/hidroxiapatita.Revista Iberoamericana de Polímeros, 2007;8(2):99-111.
  • [5] Fuentes EL, Pérez S, Martínez SI, García AR. Redes poliméricas interpenetradas de poliuretano a partir de aceite de ricino modificado y poliestireno: miscibilidad y propiedades mecánicas en función de la composición. rev.ion. 2011;24(2):45-50.
  • [6] Olvera-Izaguirre V, Rivera-Armenta JL, Antonio-Cruz RdC, Mendoza-Martínez AM. Comportamiento térmico de IPN’s de poliuretano/poli (metacrilato de metilo) modificados con cargas inorgánicas. Revista Iberoamericana de Polímeros, 2007;8(4):313-22.
  • [7] Vega-Baudrit J, Sibaja-Ballestero M, Hernández-Hernández ME, Alvarado-Aguilar P. Síntesis y caracterizacion de redes elastoméricas de poliuretano (EPU) utilizado en la elaboración de calzado. I. estudio de la relacion estructura-propiedad. Revista Iberoamericana de Polímeros. 2006;7(3):99-112.
  • [8] Guzmán GA, Pardini OR, Aznar CA, Malvy JI. Dispersiones acuosas poliuretánicas e híbridos acrílico-poliuretánicas para la terminación de productos del cuero. XVI Congreso Latinoamericano de Químicos y técnicos de la Industria del Cuero. Buenos Aires, Argentina; 2004. Tabajo 7.
  • [9] Fernández-d’Arlas B, Corcuera MA, Labidi J, Mondragon I, Eceiza A. Poly(urea)urethanes based on amorphous quaternizable hard segments and a crystalline polyol derived from castor oil. Colloid. Polym. Sci. 2013;291(5):1247-54.
  • [10] Walezko RS, Korley LTJ, Pate BD, Thomas E and Hammond PT. Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO−PPO−PEO Soft Segments and HDI Hard Segments. Macromolecules. 2009;42(6):2041–53.
  • [11] Fernández-d ́Arlas B, Corcuera MA, Runt J, Eceiza A. Block architecture influence on the structure and mechanical performance of drawn polyurethane elastomers. Polym. Int. 2014;63(7):1278-87.
  • [12] Pulido-Florez J, Valero-Valdivieso M, Higuita-Arias L, Rodríguez-Gómez S. Elastómeros de poliuretano a partir de aceite de higuerilla y almidón de yuca modificado químicamente: síntesis y propiedades fisicoquímicas, fisicomecánicas y térmicas. rev.ion. 2008;21(1):79-86.
  • [13] Báez JE, Ramírez D, Valentín JL, Marcos-Fernández A. Biodegradable Poly(ester−urethane−amide)s Based on Poly(ε-caprolactone) and Diamide−Diol Chain Extenders with Crystalline Hard Segments. Synthesis and Characterization. Macromolecules. 2012;45(17):6966-80.
  • [14] Mishra A, Aswal VK, Maiti P. Nanostructure to Microstructure Self-Assembly of Aliphatic Polyurethanes: The Effect on Mechanical Properties. J. Phys. Chem. B. 2010;114(16):5292-300.
  • [15] Rueda-Larraz L, Fernández-d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A. Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur. Polym. J. 2009;45(7):2096-109.
  • [16] Patterson CW, Hanson D, Redondo A, Scott S, Henson N. Conformational Analysis of the Crystal Structure for MDI/BDO Hard Segments of Polyurethane Elastomers. J. Polym. Sci., Part B: Polym. Phys. 1999;37(17):2303–13.
  • [17] Fernández-d’Arlas B, Ramos JA, Saralagi A, Corcuera MA, Mondragon I, Eceiza A. Molecular Engineering of Elastic and Strong Supertough Polyurethanes. Macromolecules. 2012;45(8):3436-43.
  • [18] Fernández-d’Arlas B, González I, Eceiza I. Hacia la mímesis de la seda de araña a partir de poliuretanos con segmentos cortos de unidades rígidas y semiflexibles. Rev. Lat. Met. Mat. 2015;35(1):39-48.
  • [19] Calvo-Correas T, Santamaría-Echart A, Martin L, Valea A, Corcuera MA, Eceiza A. Novel thermally-responsive biopolyurethanes from biobased diisocyanates (Tesis de maestría). España: Universidad del País Vasco; 2015.
  • [20] Cooper SL, Tobolsky AV. Properties of linear elastomeric polyurethanes. J. Appl. Polym. Sci. 1966;10(12):1837-44.
  • [21] Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkes GL. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer. 2006;47(11):4105-14.
  • [22] Fernández-d’Arlas B, Rueda L, de la Caba K, Mondragon I, Eceiza A. Microdomain Composition and Properties Differences of Biodegradable Polyurethanes Based on MDI and HDI. Polym. Eng. Sci. 2008;48(3): 519-29.
  • [23] Lin SB, Hwang KS, Tsay SY, Cooper SL. Segmental orientation studies of polyether polyurethane block copolymers with different hard segment lengths and distributions. Colloid Polym. Sci. 1985;263(2):128-40.
  • [24] Martin DJ, Meijs GF, Gunatillake PA, Yozghatlian SP, Renwick GM. The Influence of Composition Ratio on the Morphology of Biomedical Polyurethanes. J. Appl. Polym. Sci. 1999;71(6):937–52.
  • [25] Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials. 2005;26(35):7457-70.
  • [26] Kim YD, Kim SC. Effect of chemical structure on the biodegradation of polyurethanes under composting conditions. Polym. Degrad. Stab. 1998;62(2):343-52.
  • [27] Fernández-d’Arlas. Nanocomposites de poliuretanos elastoméricos y nanotubos de carbono multipared (Tesis Doctoral). España: Universidad del País Vasco (UPV/EHU); 2010.
  • [28] Salacinski HJ, Tai NR, Carson RJ, Edwards A, Hamilton G, Seifalian AM. In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress. J. Biomed. Mater. Res. 2002;59(2):207–18.
  • [29] Hirotsu T, Ketelaars AAJ, Nakayama K. Biodegradation of poly(e-caprolactone)-polycarbonate blend sheets. Polym. Degrad. Stab. 2000;68(3):311-6.
  • [30] Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of “biostable” polyurethanes. J. Biomater. Sci. Polym. Ed. 1994;6(3):225-67.
  • [31] Gogolewski S. Selected topics in biomedical polyurethanes. A review. Colloid Polym. Sci. 1989;267(9):757-85.
  • [32] Tang YW, Labow RS, Santerre JP. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Biomaterials. 2003;24(17):2805-19.
  • [33] ASTM-D 4274-88. Polyurethane Raw Materials: Determination of hydroxyl Numbers of Polyols. Test Method A. Julio (2005).
  • [34] Sung CS, Scheider NS. Temperature Dependence of Hydrogen Bonding in Toluene Diisocyanate Based Polyurethanes. Macromolecules. 1997;10(2):452-8.
  • [35] Fernández CE, Bermúdez M, Moñoz-Guerra S, León S, Versteegen RM, Meijer EW. Crystal Structure and Morphology of Linear Aliphatic n-Polyurethanes. Macromolecules. 2010;43(9):4161-71.
  • [36] Wang CB, Cooper SL. Morphology and Properties of Segmented Polyether Polyurethane ureas. Macromolecules.1983;16(5):775-86.
  • [37] Chen TK, Chui JY, Shieh TS. Glass Transition Behaviors of a Polyurethane Hard Segment based on 4,4’-Diisocyanatodiphenylmethane and 1,4-Butanediol and the Calculation of Microdomain Composition. Macromolecules. 1997;30(17):5068-74.
  • [38] Chen TK, Shieh TS, Chui JY. Studies on the First DSC Endotherm of Polyurethane Hard Segment Based on 4,4’-Diphenylmethane Diisocyanate and 1,4-Butanediol. Macromolecules. 1998;31(4):1312-20.
  • [39] Cesteros-Iturbe LC. Aplicaciones de la FTIR al estudio de las interacciones polímero-polímero. Revista Iberoamericana de Polímeros. 2004;5(3):111-32.
  • [40] Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X. Structure and Biodegradation Mechanism of Milled Bombyx mori Silk Particles. Biomacromolecules. 2012;13(8):2503−12.
  • [41] Banderkar J, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins: Characteristic amide bands of β-turns. Proc. Natl. Acad. Sci. USA, 1979;76(2):774-7.
  • [42] Papadopoulos P, Ene R, Weidner I, Kremer F. Similarities in the Structural Organization of Major and Minor Ampullate Spider Silk. Macromol. Rapid Commun. 2009;30(9):851-7.
  • [43] López-Carrasquero F. Análisis conformacional de polímeros mediante espectroscopía infrarroja de polarización (DIR). Revista Iberoamericana de Polímeros. 2003;4(4):48-64.
  • [44] Rabani G, Luftmann H, Kraft A. Synthesis and properties of segmented copolymers containing short aramid hard segments and aliphatic polyester or polycarbonate soft segments. Polymer. 2005;46(1):27-35.
  • [45] Franco-García L. Síntesis y caracterización de nuevas poliamidas con unidades monometilénicas. Tesis Doctoral, Universidad Politécnica de Cataluña, Barcelona, España, 1994.
  • [46] Lee KH, Kim KW, Pesapane A, Kim HY, Rabolt JF. Polarized FT-IR Study of Macroscopically Oriented Electrospun Nylon-6 Nanofibers. Macromolecules. 2008;41(4):1494-8.
  • [47] Yilgör E, Yilgör I, Yurtsever E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer. 2002;43(24):6551-9.
  • [48] Zha L, Wu M, Yang J. Hydrogen Bonding and Morphological Structure of Segmented Polyurethanes Based on Hydroquinone–Bis(β-hydroxyethy)ether as a Chain Extender. J. Appl. Polym. Sci. 1999;73(14):2895–902.
  • [49] Yeh F, Hsiao BS, Sauer B, Michel S, Siesler H. In-Situ Studies of Structure Development during Deformation of a Segmented Poly(urethane-urea) Elastomer. Macromolecules. 2003;36(6):1940-54.
  • [50] Huang SL, Lai JY. Structure-tensile properties of polyurethanes. Eur. Polym. J. 1997;33(10-12):1563-7.
  • [51] Vega-Baudrit J, Sibaja-Ballesteros, Martín-Martínez JM, Porras M. Perspectivas y uso de materiales nanoestructurados en el mejoramiento de materiales reforzados poliméricos. Revista Iberoamericana de Polímeros: 2010;11(7):574-92.
  • [52] Magonov SN, Cleveland J, Elings V, Denley D, Whangbo MH. Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf. Sci. 1997;389(1-3):201-11.
  • [53] Ocando C, Tercjak A, Martín MD, Ramos JA, Campo M, Mondragon I. Morphology Development in Thermosetting Mixtures through the Variation on Chemical Functionalization Degree of Poly(styrene-b butadiene) Diblock Copolymer Modifiers. Thermomechanical Properties. Macromolecules. 2009;42(16):6215-24.
  • [54] McLean RS, Sauer BB. Tapping-Mode AFM Studies Using Phase Detection for Resolution of Nanophases in Segmented Polyurethanes and Other Block Copolymers. Macromolecules. 1997;30(26):8314-7.
  • [55] Garret JT, Siedlecki CA, Runt J. Microdomain Morphology of Poly (urethane urea) Multiblock Copolymers. Macromolecules. 2001;34(20):7066-70.
  • [56] Tamayo J, García F. Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 1997;71(16):2394-6.
  • [57] Fernández-d’Arlas B, Rueda L, Khan U, Coleman JN, Mondragon I, Eceiza A. Inverting Polyurethanes Synthesis: Effects on nano/micro-structure and mechanical properties. Soft Materials. 2011;9(1):79-93.
  • [58] Fernández-d’Arlas B, Fernández R, Runt J, Eceiza A. Polyurethanes containing a crystalline polyol and semiflexible urethane segments. J. Appl. Polym. Sci. 2014;132(3):41281.
  • [59] Kultys A, Pikus S. Polyurethanes Containing Sulfur. III. New Thermoplastic HDI-Based Segmented Polyurethanes with Diphenylmethane Unit in Their Structure. J. Polym. Sci., Part A: Polym. Chem. 2001;39(10):1733–42.
  • [60] Saiani A, Daunch WA, Verbeke H, Leenslag JW, Higgins JS. Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 1. Thermodynamic Investigation. Macromolecules. 2001;34(26):9059-68.
  • [61] Díaz-Calderón P, Quero F, MacNaughtan B, Rousennova M, Enrione J. Efecto del sorbitol sobre la relajación estructural en películas de gelatina en estado vítreo. rev.ion. 2015;28(2):93-101.