ANALHITZAA tool to extract linguistic information from large corpora in Humanities research

  1. Iruskieta Quintian, Mikel
  2. Uria Garin, Larraitz
  3. Otegi, Arantxa
  4. Imaz, Oier
  5. Díaz de Ilarraza Sánchez, Arantza
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2017

Número: 58

Páginas: 77-84

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

The reduced size of corpora in some areas of research is due to the lack of tools to process massively and easily the language under study. In this article, we present ANALHITZA, a tool which is being developed within the Clarin-k project, whose aim is the creation of linguistic technologies that are useful for research on Social Sciences and Humanities. ANALHITZA has been designed to extract linguistic information online from large corpora in an easy way. Besides, it is a multilingual tool which can process texts written in three languages: Basque, Spanish and English. Moreover, we present three real examples of study where ANALHITZA has been used. The tool can be redesigned or changed, according to the needs of the scientific community in the field of Humanities.

Referencias bibliográficas

  • Agerri, R., J. Bermudez, and G. Rigau. 2014. IXA pipeline: Efficient and Ready to Use Multilingual NLP tools. In Proceedings of LREC 2014, pages 3823–3828.
  • Agerri, R. and G. Rigau. 2016. Robust multilingual Named Entity Recognition with shallow semi-supervised features. Artificial Intelligence, 238:63 – 82.
  • Alberdi, U. 2013. Euli giro. Susa.
  • Alonso, S. and A. Volkens. 2012. Contentanalyzing political texts. A quantitative approach, volume 47. CIS.
  • Arrieta, B. 2012. Alter ero. Susa.
  • Blei, D.M. 2012. Probabilistic topic models. Communications of the ACM, 55(4):77– 84.
  • Carley, K.M. 1997. Network text analysis: The network position of concepts. In Carl W. Roberts, editor, Text analysis for the social sciences: Methods for drawing statistical inferences from texts and transcripts, Routledge Communication Series. pages 79–100.
  • CICIR. 2007. Building Peace: the Challenge of Moving from Desire to Implementation. Columbia University.
  • CICIR. 2009. The Challenge of Moving from Desire to Implementation. Columbia University.
  • Fokkens, A., A. Soroa, Z. Beloki, N. Ockeloen, G. Rigau, W.R. van Hage, and P. Vossen. 2014. NAF and GAF: Linking linguistic annotations. In Proceedings 10th Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation.
  • Grimmer, J. and B.M. Stewart. 2013. Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis.
  • Hualde, J.I. and J. Ortiz de Urbina. 2003. A grammar of Basque, volume 26. Walter de Gruyter.
  • Iruskieta, M., I. Da Cunha, and M. Taboada. 2015. A qualitative comparison method for rhetorical structures: identifying different discourse structures in multilingual corpora. Language resources and evaluation, 49(2):263–309.
  • Iruskieta, M., G. Labaka, and J.D. Antonio. 2016. Detecting the central units in two different genres and languages: a preliminary study of Brazilian Portuguese and Basque texts. PLN, 55(4):77–84.
  • Jurafsky, D. 2009. Speech & language processing. Pearson Education. India.
  • Krippendorff, K. 2004. Content analysis: An introduction to its methodology. Sage.
  • Otegi, A., N. Ezeiza, I. Goenaga, and G. Labaka. 2016. A Modular Chain of NLP Tools for Basque. In Proceedings of the 19th International Conference on Text, Speech and Dialogue, pages 93–100.
  • Villegas, M., N. Bel, C. Gonzalo, A. Moreno, and N. Simelio. 2012. Using Language Resources in Humanities research. In LREC 2012, pages 3284–3288.