Mapas de susceptibilidad de deslizamientos a partir del modelo de regresión logística en la cuenca del río Oria (Gipuzkoa). Estrategias de tratamiento de variables

  1. Txomin Bornaetxea Estela
  2. Iñaki Antigüedad
  3. Orbange Ormaetxea
Revista:
Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

ISSN: 0214-1744

Año de publicación: 2018

Volumen: 32

Número: 1-2

Páginas: 7-29

Tipo: Artículo

DOI: 10.17735/CYG.V32I1-2.59493 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

Referencias bibliográficas

  • Amorim, S. F. (2012). Estudio comparativo de métodos para la evaluación de la susceptibilidad del terreno a la formación de deslizamientos superficiales: Aplicación al Pirineo Oriental. Tesis doctoral, Universidad Politécnica de Catalunya, Barcelona.
  • Atkinson, P. M. y Massari, R. (1998). Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Computers & Geosciences, 24(4): 373-385. https://doi.org/10.1016/S0098-3004(97)00117-9
  • Ayala-Carcedo, F.J. y Olcina, J. (2002). Riesgos Naturales. Ariel Ciencia, 1512 pp.
  • Bai, S.B.; Wang, J.; Lü, G.N.; Zhou, P.G.; Hou, S.S. y Xu, S.N. (2010). Gis-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology, 115(1): 23-31. https://doi.org/10.1016/j.geomorph.2009.09.025
  • Blais Stevens, A.; Behnia, P.; Kremer, M.; Page, A.; Kung, R. y Bonham-Carter, G. (2012). Landslide susceptibility mapping of the Sea to Sky transportation corridor, British Columbia, Canada: comparison of two methods. Bulletin of Engineering Geology and the Environment, 71(3): 447-466. https://doi.org/10.1007/s10064-012-0421-z
  • Bonachea, J. (2006). Desarrollo, aplicación y validación de procedimientos y modelos para la evaluación de amenazas, vulnerabilidad y riesgo debidos a procesos geomorfológicos. Tesis doctoral, Universidad de Cantabria.
  • Bonachea, J.; Remondo, J.; Terán, D.; Díaz, J. R.; González Díez, A. y Cendrero, A. (2009). Landslide risk models for decision making. Risk analysis, 29(11): 1629-1643. https://doi.org/10.1111/j.1539-6924.2009.01283.x
  • Budimir, M.; Atkinson, P. y Lewis, H. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 12(3): 419-436. https://doi.org/10.1007/s10346-014-0550-5
  • Campos, J. y García-Dueñas, V. (1972). Mapa Geológico de España escala 1:50.000. 2ª Serie (MAGNA), Hoja de San Sebastián. IGME. Servicio de Publicaciones Ministerio de Industria, Madrid.
  • Campos, J.; Olivé, A.; Ramírez, J.I.; Solé, J. y Villalobos, L. (1983). Mapa Geológico de España escala 1:50.000. 2ª Serie (MAGNA), Hoja de Tolosa. IGME. Servicio de Publicaciones Ministerio de Industria, Madrid.
  • Can, T.; Nefeslioglu, H. A.; Gokceoglu, C.; Sonmez, H. y Duman, T. Y. (2005). Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology, 72(1): 250-271. https://doi.org/10.1016/j.geomorph.2005.05.011
  • Carrara, A. (1983). Multivariate models for landslide hazard evaluation. Mathematical geology, 15(3): 403-426. https://doi.org/10.1007/BF01031290
  • Cascini, L. (2008). Applicability of landslide susceptibility and hazard zoning at different scales. Engineering Geology, 102(3): 164-177. https://doi.org/10.1016/j.enggeo.2008.03.016
  • Chung, C.J. F. y Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3): 451-472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
  • Chung, C. y Fabbri, A. G. (2005). Systematic procedures of landslide hazard mapping for risk assessment using spatial prediction models. Landslide hazard and risk. Wiley, New York, 139-177. https://doi.org/10.1002/9780470012659.ch4
  • Corominas, J. y Mavrouli, J. (2011). Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies. Documento técnico, SafeLand. 7th Framework Programme Cooperation Theme 6 Environment (including climate change) Sub-Activity 6.1.3 Natural Hazards.
  • Costanzo, D.; Chacón, J.; Conoscenti, C.; Irigaray, C. y Rotigliano, E. (2014). Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides, 11(4): 639-653. https://doi.org/10.1007/s10346-013-0415-3
  • CRED (2014). Atlas of mortality and economic losses from weather, climate and water extremes (1970-2012). Documento técnico, World Meteorological Organization, Geneva.
  • Dai, F. y Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3): 213-228. https://doi.org/10.1016/S0169-555X(01)00087-3
  • Das, I.; Sahoo, S.; Van Westen, C.; Stein, A. y Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4): 627-637. https://doi.org/10.1016/j.geomorph.2009.09.023
  • De Winter, J. C. y Dodou, D. (2010). Five point likert items: t test versus mann-whitney-wilcoxon. Practical Assessment, Research & Evaluation, 15(11): 1-12.
  • Devkota, K. C.; Regmi, A. D.; Pourghasemi, H. R.; Yoshida, K.; Pradhan, B.; Ryu, I. C.; Dhital, M. R. y Althuwaynee, O. F. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1): 135-165. https://doi.org/10.1007/s11069-012-0347-6
  • Diario Vasco (18 de marzo, 2013). Las lluvias provocan daños de casi 8 millones en la red viaria de Gipuzkoa. Diario Vasco.
  • Diputación Foral de Gipuzkoa (1987). Estudio de riesgos naturales del Territorio Histórico de Gipuzkoa. Dirección General de Medio Ambiente. Informe inédito.
  • Diputación Foral de Gipuzkoa (2007). Elaboración de modelos de predicción de riesgos naturales de incendios, deslizamientos e inundaciones en el Territorio Histórico de Gipuzkoa. Dirección General de Medio Ambiente. Informe inédito.
  • Diputación Foral de Gipuzkoa (2013). Evaluación y gestión integrada de riesgos geotécnicos en la red de carreteras de la Diputación Foral de Gipuzkoa. Dpto. de Movilidad e Infraestructuras Viarias. Informe inédito.
  • Duman, T. Y.; Can, T.; Gokceoglu, C.; Nefeslioglu, H. A. y Sonmez, H. (2006). Application of logistic regression for landslide susceptibility zoning of cekmece area, Istanbul, Turkey. Environmental Geology, 51(2): 241–256. https://doi.org/10.1007/s00254-006-0322-1
  • EM-DAT. The International Disaster Database. www.emdat.be
  • EVE (2010). Mapa Geológico del País Vasco 1:100.000. Ente Vasco de la Energía.
  • Fernández-Arroyabe, P. y Martin-Vide, J. (2012). Regionalization of the probability of wet spells and rainfall persistence in the Basque Country (Northern Spain). International Journal of Climatology, 32(12): 1909-1920. https://doi.org/10.1002/joc.2405
  • Felicísimo, Á. M.; Cuartero, A.; Remondo, J. y Quirós, E. (2013). Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides, 10(2): 175-189. https://doi.org/10.1007/s10346-012-0320-1
  • González-Hidalgo, J. C.; Brunetti, M. y de Luis, M. (2011). A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends December 1945–November 2005). International Journal of Climatology, 31(5): 715-731. https://doi.org/10.1002/joc.2115
  • Grozavu, A.; Pleşcan, S.; Patriche, C. V.; Mărgărint, M. C. y Roşca, B. (2013). Landslide susceptibility assessment: GIS application to a complex mountainous environment. En: The Carpathians: Integrating Nature and Society Towards Sustainability, 31-44. Springer. https://doi.org/10.1007/978-3-642-12725-0_4
  • Günther, A.; Van Den Eeckhaut, M.; Malet, J.P.; Reichenbach, P. y Hervás, J. (2014). Climate physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology, 224: 69-85. https://doi.org/10.1016/j.geomorph.2014.07.011
  • Guzzetti, F.; Carrara, A.; Cardinali, M. y Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1): 181-216. https://doi.org/10.1016/S0169-555X(99)00078-1
  • Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. (2005), Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1):272-299. https://doi.org/10.1016/j.geomorph.2005.06.002
  • IDE de Euskadi. Infraestructura de Datos Espaciales de Euskadi. www.geo.euskadi.eus
  • INGEMISA (1996). Inventario y Análisis de las Áreas sometidas a Riesgo de Inestabilidades del Terreno de la C.A.P.V. Documento técnico, Gobierno Vasco.
  • Kumar, R. y Anbalagan, R. (2015). Landslide susceptibility zonation of Tehri reservoir rim region using binary logistic regression model. Current Science, 108(9): 1662-1672.
  • Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7): 1477-1491. https://doi.org/10.1080/01431160412331331012
  • Nefeslioglu, H.; Gokceoglu, C. y Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3): 171-191. https://doi.org/10.1016/j.enggeo.2008.01.004
  • Nefeslioglu, H.; Gokceoglu, C.; Sonmez, H. y Gorum, T. (2011). Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, Rize, Turkey). Landslides, 8(4), 459-483. https://doi.org/10.1007/s10346-011-0267-7
  • Pardo, A. y Ruiz, M. A. (2002). SPSS 11. Guía para el análisis de datos. McGraw-Hill/Interamericana de España, Madrid.
  • Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40: 927-930. https://doi.org/10.1130/G33217.1
  • Pourghasemi, H.; Moradi, H. y Aghda, S. F. (2013). Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69(1): 749-779. https://doi.org/10.1007/s11069-013-0728-5
  • Ramírez, P. E.; Fito, J. M. E. y Rojo, A. B. (2005). Evaluación espacial de los peligros naturales en el valle de Oiartzun (Guipuzkoa). Munibe Ciencias Naturales. Natur zientziak, 1(56): 5-20.
  • Rana, R. y Singhal, R. (2015). Chi square test and its application in hypothesis testing. Journal of the Practice of Cardiovascular Sciences, 1(1): 69-71. https://doi.org/10.4103/2395-5414.157577
  • Remondo, J.; Bonachea, J. y Cendrero, A. (2008). Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology, 94(3): 496-507. https://doi.org/10.1016/j.geomorph.2006.10.041
  • Rouse Jr, J.; Haas, R.; Schell, J. y Deering, D. (1974). Monitoring vegetation systems in the great plains with erts. NASA special publication, 351: 309.
  • Schicker, R. D. (2010). Quantitative landslide susceptibility assessment of the Waikato region using GIS. Tesis doctoral, The University of Waikato.
  • Soeters, R. y Van Westen, C. (1996). Slope stability recognition analysis and zonation. En: Landslides: Investigation and Mitigation, 129-177.
  • Trigila, A.; Iadanza, C.; Esposito, C. y Scarascia-Mugnozza, G. (2015). Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249: 119-136. https://doi.org/10.1016/j.geomorph.2015.06.001
  • Van Den Eeckhaut, M.; Hervás, J.; Jaedicke, C.; Malet, J.P.; Montanarella, L. y Nadim, F. (2012). Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides, 9(3): 357-369. https://doi.org/10.1007/s10346-011-0299-z
  • Van Den Eeckhaut, M.; Vanwalleghem, T.; Poesen, J.; Govers, G.; Verstraeten, G. y Vandekerckhove, L. (2006). Prediction of landslide susceptibility using rare events logistic regression: a case study in the Flemish Ardennes (Belgium). Geomorphology, 76(3): 392-410. https://doi.org/10.1016/j.geomorph.2005.12.003
  • Van Westen, C. J. (1993). Application of geographic information systems to landslide hazard zonation. Tesis doctoral, TU Delft, Delft University of Technology.
  • Varnes, D. J. (1958). Landslide types and processes. Landslides and Engineering Practice, 24: 20-47.
  • Wang, Y.T.; Seijmonsbergen, A. C.; Bouten, W. y Chen, Q.T. (2015). Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science, 12(2): 268-288. https://doi.org/10.1007/s11629-014-3134-x
  • Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat Turkey). Computers & Geosciences, 35(6): 1125-1138. https://doi.org/10.1016/j.cageo.2008.08.007
  • Zhu, L. y Huang, J.F. (2006). GIS-based logistic regression method for landslide susceptibility mapping in regional scale. Journal of Zhejiang University-SCIENCE A, 7(12): 2007-2017. https://doi.org/10.1631/jzus.2006.A2007