Modular multi-agent reinforcement learning of linked multi-component robotic systems

  1. FERNANDEZ GAUNA, BORJA
Dirixida por:
  1. Manuel Graña Romay Director

Universidade de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 23 de abril de 2012

Tribunal:
  1. Ángel Pascual del Pobil Ferré Presidente/a
  2. Francisco Xabier Albizuri Irigoyen Secretario
  3. Bruno Apolloni-Ghetti Vogal
  4. Michal Wozniak Vogal
  5. Richard J. Duro Fernández Vogal

Tipo: Tese

Teseo: 115276 DIALNET

Resumo

THE CONTENTS OF THIS THESIS CAN BE SUMMARIZED AS TWO MAIN IDEAS: MODULAR TECHNIQUES TO DECOMPOSE A REINFORCEMENT LEARNING TASK IN OVER-CONSTRAINED ENVIRONMENTS SUCH AS LINKED-MCRS AS SEVERAL CONCURRENT SUB-TASKS, AND EXTENSION OF THESE MODULAR REINFORCEMENT LEARNING APPROACHES TO MULTI-AGENT REINFORCEMENT LEARNING ENVIRONMENTS.