Modular multi-agent reinforcement learning of linked multi-component robotic systems

  1. FERNANDEZ GAUNA, BORJA
Zuzendaria:
  1. Manuel Graña Romay Zuzendaria

Defentsa unibertsitatea: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 2012(e)ko apirila-(a)k 23

Epaimahaia:
  1. Ángel Pascual del Pobil Ferré Presidentea
  2. Francisco Xabier Albizuri Irigoyen Idazkaria
  3. Bruno Apolloni-Ghetti Kidea
  4. Michal Wozniak Kidea
  5. Richard J. Duro Fernández Kidea

Mota: Tesia

Teseo: 115276 DIALNET

Laburpena

THE CONTENTS OF THIS THESIS CAN BE SUMMARIZED AS TWO MAIN IDEAS: MODULAR TECHNIQUES TO DECOMPOSE A REINFORCEMENT LEARNING TASK IN OVER-CONSTRAINED ENVIRONMENTS SUCH AS LINKED-MCRS AS SEVERAL CONCURRENT SUB-TASKS, AND EXTENSION OF THESE MODULAR REINFORCEMENT LEARNING APPROACHES TO MULTI-AGENT REINFORCEMENT LEARNING ENVIRONMENTS.