Acquisition and processing of new data sources for improved condition monitoring of mechanical systems

  1. BRAVO IMAZ, IÑAKI
Supervised by:
  1. Alfredo García Arribas Director
  2. Aitor Arnáiz Director

Defence university: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 13 March 2018

Committee:
  1. María Luisa Fernández Gubieda Chair
  2. Susana Ferreiro del Río Secretary
  3. Andrew Starr Committee member

Type: Thesis

Teseo: 146619 DIALNET lock_openADDI editor

Abstract

Este trabajo está centrado en el desarrollo de nuevas formas de monitorización en línea del estado de salud de sistemas mecánicos mediante tecnologías poco utilizadas hasta ahora en este campo. En particular, se han investigado el uso de la monitorización de la viscosidad del aceite lubricante y la tecnología de análisis de las características de la corriente que alimenta el motor para obtener conocimiento sobre el estado de las cajas de engranajes. Por un lado, se presenta una nueva solución basada en materiales magnetoelásticos para la monitorización de la viscosidad del aceite lubricante. Por el otro, el análisis de la corriente alimentación del motor (MCSA por sus siglas en inglés) se presenta como alternativa de los acelerómetros tradicionales para la monitorización de anomalías mecánicas.En particular, se ha desarrollado un sensor magnetoelástico de viscosidad cinemática para mediciones en línea. La principal ventaja del sensor propuesto es su capacidad de medir en una amplia gama de valores de viscosidad (desde 32 cSt hasta 320 cSt). No se conoce ningún otro sensor equivalente comercialmente disponible con un rango similar.Con respecto al análisis de las características de la corriente de alimentación del motor (MCSA), el objetivo de la Tesis es poder diseñar un sistema para monitorizar una caja de engranajes en funcionamiento normal. En este sentido, se ha abordado el análisis de transitorios de velocidad, manteniendo la carga fija. Se ha utilizado un banco de pruebas de cajas de engranajes para reproducir diferentes fallos y adquirir datos en diferentes condiciones de operación.