Teofilo
Rojo Aparicio
Commonwealth Scientific and Industrial Research Organisation
Canberra, AustraliaPublikationen in Zusammenarbeit mit Forschern von Commonwealth Scientific and Industrial Research Organisation (22)
2023
-
Use of Hydrothermal Carbonization to Improve the Performance of Biowaste-Derived Hard Carbons in Sodium Ion-Batteries
ChemSusChem, Vol. 16, Núm. 23
2021
-
Biphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2: a structural investigation
Dalton Transactions, Vol. 50, Núm. 4, pp. 1357-1365
-
Dopant and Current Rate Dependence on the Structural Evolution of P2-Na2/3Mn0.8Zn0.1M0.1O2 (M=Cu, Ti): An Operando Study
Chemistry-Methods, Vol. 1, Núm. 6, pp. 295-304
-
P2-Na2/3Mn0.8M0.1M′0.1O2(M = Zn, Fe and M′ = Cu, Al, Ti): A Detailed Crystal Structure Evolution Investigation
Chemistry of Materials, Vol. 33, Núm. 11, pp. 3905-3914
2020
-
Iron-Doped Sodium-Vanadium Fluorophosphates: Na3V2-yO2-yFey(PO4)2F1+ y (y < 0.3)
Inorganic Chemistry, Vol. 59, Núm. 1, pp. 854-862
-
Structural evolution and electrochemistry of the Mn-Rich P2– Na2/3Mn0.9Ti0.05Fe0.05O2 positive electrode material
Electrochimica Acta, Vol. 341
2019
-
Investigation of K modified P2 Na 0.7 Mn 0.8 Mg 0.2 O 2 as a cathode material for sodium-ion batteries
CrystEngComm, Vol. 21, Núm. 1, pp. 172-181
-
Exploring the rate dependence of phase evolution in P2-type Na2/3Mn0.8Fe0.1Ti0.1O2
Journal of Materials Chemistry A, Vol. 7, Núm. 19, pp. 12115-12125
-
High performance P2 sodium layered oxides: An in-depth study into the effect of rationally selected stoichiometry
Journal of Materials Chemistry A, Vol. 7, Núm. 38, pp. 21812-21826
2018
-
Rate and Composition Dependence on the Structural-Electrochemical Relationships in P2-Na2/3Fe1- yMnyO2 Positive Electrodes for Sodium-Ion Batteries
Chemistry of Materials, Vol. 30, Núm. 21, pp. 7503-7510
2017
-
Structure-Electrochemical Evolution of a Mn-Rich P2 Na2/3Fe0.2Mn0.8O2 Na-Ion Battery Cathode
Chemistry of Materials, Vol. 29, Núm. 17, pp. 7416-7423
2016
-
Comparison of the structural evolution of the O3 and P2 phases of Na2/3Fe2/3Mn1/3O2 during electrochemical cycling
Electrochimica Acta, Vol. 203, pp. 189-197
-
Cystallographic Evolution of P2 Na2/3Fe0.4Mn0.6O2 Electrodes during Electrochemical Cycling
Chemistry of Materials, Vol. 28, Núm. 17, pp. 6342-6354
-
High-Performance P2-Phase Na2/3Mn0.8Fe0.1Ti0.1O2 Cathode Material for Ambient-Temperature Sodium-Ion Batteries
Chemistry of Materials, Vol. 28, Núm. 1, pp. 106-116
-
Moisture exposed layered oxide electrodes as Na-ion battery cathodes
Journal of Materials Chemistry A, Vol. 4, Núm. 48, pp. 18963-18975
2015
-
A comprehensive picture of the current rate dependence of the structural evolution of P2-Na2/3Fe2/3Mn1/3O2
Journal of Materials Chemistry A, Vol. 3, Núm. 42, pp. 21023-21038
-
Rate Dependent Performance Related to Crystal Structure Evolution of Na0.67Mn0.8Mg0.2O2 in a Sodium-Ion Battery
Chemistry of Materials, Vol. 27, Núm. 20, pp. 6976-6986
-
Structural evolution of mixed valent (V3+/V4+) and V4+ sodium vanadium fluorophosphates as cathodes in sodium-ion batteries: Comparisons, overcharging and mid-term cycling
Journal of Materials Chemistry A, Vol. 3, Núm. 45, pp. 23017-23027
-
The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective
Advanced Functional Materials, Vol. 25, Núm. 31, pp. 4994-5005
2014
-
Sodium distribution and reaction mechanisms of a Na3V 2O2(PO4)2F electrode during use in a sodium-ion battery
Chemistry of Materials, Vol. 26, Núm. 11, pp. 3391-3402