Additional file 5 of Searching for homozygous haplotype deficiency in Manech Tête Rousse dairy sheep revealed a nonsense variant in the MMUT gene affecting newborn lamb viability

  1. Ben Braiek, Maxime 1
  2. Moreno-Romieux, Carole 1
  3. André, Céline
  4. Astruc, Jean-Michel 2
  5. Bardou, Philippe 3
  6. Bordes, Arnaud 1
  7. Debat, Frédéric 1
  8. Fidelle, Francis
  9. Granado-Tajada, Itsasne 4
  10. Hozé, Chris
  11. Plisson-Petit, Florence 1
  12. Rivemale, François 1
  13. Sarry, Julien 1
  14. Tadi, Némuel 1
  15. Woloszyn, Florent 1
  16. Fabre, Stéphane 1
  1. 1 Federal University of Toulouse Midi-Pyrénées
  2. 2 Institut de l’Elevage
    info

    Institut de l’Elevage

    París, Francia

    ROR https://ror.org/01csjkt09

  3. 3 National Research Institute for Agriculture, Food and Environment
  4. 4 Instituto Vasco de Investigación y Desarrollo Agrario
    info

    Instituto Vasco de Investigación y Desarrollo Agrario

    Derio, España

    ROR 03rf31e64

Éditeur: figshare

Année de publication: 2024

Type: Dataset

CC BY 4.0

Résumé

Additional file 5: Table S3. Clustering 20-SNP haplotypes into MTRDHH regions. The table shows all significant haplotypes of 20 markers (20-SNP haplotypes with frequency > 1%, P-value < 1.9 × 10−4 and deficit ≥ 75%). As described in the Methods section, some of the consecutive 20-SNP haplotypes could be clustered into five MTRDHH regions based on similar parameters. Table S4. SNPs defining the MTRDHH regions. The table gives the position of each SNP within the MTRDHH regions according to the sheep reference genomes Oar_v3.1, Oar_rambouillet_v1.0 and ARS-UI_Ramb_v2.0, and the phased alleles of each deficient haplotype.

Références bibliographiques

  • 10.1038/s41576-018-0082-2
  • 10.2527/af.2016-0006
  • 10.2527/af.2011-0027
  • 10.3389/fgene.2021.768626
  • 10.1016/s0301-6226(03)00145-3
  • 10.1017/s1751731114000743
  • 10.3168/jds.2008-1113
  • 10.1071/rd14379
  • 10.1101/gr.207076.116
  • 10.20870/productions-animales.2016.29.5.3000
  • 10.1038/ng.96
  • 10.1126/science.2884728
  • 10.3168/jds.2011-4624
  • 10.1186/s12711-021-00634-1
  • 10.3390/genes13010045
  • 10.20870/productions-animales.2018.31.1.2202
  • 10.3168/jds.2018-15405
  • 10.1186/1471-2164-15-478
  • 10.1126/science.1252806
  • 10.3389/fgene.2012.00035
  • 10.1093/bioinformatics/btr330
  • 10.1186/s12864-018-4447-x
  • 10.3389/fgene.2020.00585
  • 10.1371/journal.pgen.1006997
  • 10.1111/eva.12691
  • 10.3389/fgene.2021.761728
  • 10.1111/j.1365-2052.2005.01398.x
  • 10.1074/jbc.m116.747717
  • 10.3168/jds.2018-16100
  • 10.1002/humu.20128
  • 10.1186/s13023-014-0130-8
  • 10.1002/ajmg.c.30090
  • 10.3390/ani10101855
  • 10.1016/j.bbadis.2019.165622
  • 10.1074/jbc.m310533200
  • 10.1186/s12711-021-00686-3
  • 10.1371/journal.pone.0065550
  • 10.3168/jds.2017-12579
  • 10.3390/ani11123535
  • 10.3168/jds.2013-7745
  • 10.1186/s40104-023-00923-3
  • 10.1111/age.12309
  • 10.1046/j.1365-2052.2002.00896_5.x
  • 10.1101/gr.072090.107
  • 10.1093/molbev/msx114
  • 10.1371/journal.pgen.1005629
  • 10.1111/age.13026