Soluciones innovadoras de energía marinaCombinando columnas de agua oscilante y turbinas eólicas flotantes para una mayor eficiencia

  1. Aboutalebi, Payam 1
  2. M'zoughi, Fares 1
  3. Ahmad, Irfan 1
  4. Bagheri Rouch, Tahereh 1
  5. Garrido, Izaskun 1
  6. Garrido, Aitor J. 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revue:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Année de publication: 2024

Número: 45

Type: Article

DOI: 10.17979/JA-CEA.2024.45.10932 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

Résumé

This research investigates the incorporation of Oscillating Water Columns (OWCs) into Semi-Submersible Floating WindTurbines (FWTs) to improve offshore energy extraction. The goal of combining OWCs with FWTs is to reduce the oscillatory motions caused by waves and wind, thus enhancing system efficiency and extending operational lifespan. The study involves redesigning the existing FWT platform, known as WINDMOOR, to integrate OWCs into two of its three columns, specifically for a 12 MW FWT system. The redesign process prioritizes hydrostatic stability and hydrodynamic performance to support the additional OWC elements. Hydrodynamic analyses are performed to assess the hybrid platform’s performance relative to the original design, focusing on the reduction of oscillatory motions. The results highlight the potential benefits of integrating OWCs within FWT systems, particularly in terms of improving power generation efficiency and structural resilience. This research advances offshore energy harvesting technologies by offering insights into the feasibility and effectiveness of hybrid systems for sustainable offshore renewable energy production.

Références bibliographiques

  • Aboutalebi, P., Garrido, A. J., Garrido, I., Nguyen, D. T., Gao, Z., 2024. Hydrostatic stability and hydrodynamics of a floating wind turbine platform integrated with oscillating water columns: A design study. Renewable Energy 221, 119824. DOI: https://doi.org/10.1016/j.renene.2023.119824
  • Aboutalebi, P., M’zoughi, F., Garrido, I., Garrido, A. J., 2021a. Performance analysis on the use of oscillating water column in barge-based floating offshore wind turbines. Mathematics 9 (5), 475. DOI: https://doi.org/10.3390/math9050475
  • Aboutalebi, P., M’zoughi, F., Garrido, I., Garrido, A. J., 2023. A control technique for hybrid floating offshore wind turbines using oscillating water columns for generated power fluctuation reduction. Journal of Computational Design and Engineering 10 (1), 250–265. DOI: https://doi.org/10.1093/jcde/qwac137
  • Aboutalebi, P., M’zoughi, F., Martija, I., Garrido, I., Garrido, A. J., 2021b. Switching control strategy for oscillating water columns based on response amplitude operators for floating offshore wind turbines stabilization. Applied Sciences 11 (11), 5249. DOI: https://doi.org/10.3390/app11115249
  • Ahmad, I., M’zoughi, F., Aboutalebi, P., Garrido, I., Garrido, A. J., 2023a. Fuzzy logic control of an artificial neural network-based floating offshore wind turbine model integrated with four oscillating water columns. Ocean Engineering 269, 113578. DOI: https://doi.org/10.1016/j.oceaneng.2022.113578
  • Ahmad, I., M’zoughi, F., Aboutalebi, P., Garrido, I., Garrido, A. J., 2023b. A regressive machine-learning approach to the non-linear complex fast model for hybrid floating offshore wind turbines with integrated oscillating water columns. Scientific Reports 13 (1), 1499. DOI: https://doi.org/10.1038/s41598-023-28703-z
  • DNV, G., 2017. Sesam user manual-wadam. DNV GL Software.
  • Kamarlouei, M., Gaspar, J., Calvario, M., Hallak, T., Mendes, M. J., Thiebaut, F., Soares, C. G., 2020. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform. Renewable Energy 152, 1171–1185. DOI: https://doi.org/10.1016/j.renene.2020.01.078
  • MANUAL, S. U., 2017. Wave analysis by diffraction and morison theory.
  • Mello, P. C., Malta, E. B., da Silva, R. O., Candido, M. H., do Carmo, L. H. S., Alberto, I. F., Franzini, G. R., Simos, A. N., Suzuki, H., Gonc ̧alves, R. T., 2021. Influence of heave plates on the dynamics of a floating offshore wind turbine in waves. Journal of Marine Science and Technology 26, 190–200. DOI: https://doi.org/10.1007/s00773-020-00728-3
  • M’zoughi, F., Aboutalebi, P., Garrido, I., Garrido, A. J., De La Sen, M., 2021. Complementary airflow control of oscillating water columns for floating offshore wind turbine stabilization. Mathematics 9 (12), 1364. DOI: https://doi.org/10.3390/math9121364
  • M’zoughi, F., Garrido, I., Garrido, A. J., De La Sen, M., et al., 2023. Fuzzy airflow-based active structural control of integrated oscillating water columns for the enhancement of floating offshore wind turbine stabilization. International Journal of Energy Research. DOI: https://doi.org/10.1155/2023/4938451
  • Sarmiento, J., Iturrioz, A., Ayllón, V., Guanche, R., Losada, I., 2019. Experimental modelling of a multi-use floating platform for wave and wind energy harvesting. Ocean Engineering 173, 761–773. DOI: https://doi.org/10.1016/j.oceaneng.2018.12.046
  • Sierra-García, J., Santos, M., 2021. Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial 18 (4), 327–335. DOI: https://doi.org/10.4995/riai.2021.16111
  • Slocum, A., Kluger, J., Mannai, S., 2019. Energy harvesting and storage system stabilized offshore wind turbines. In: 2019 Offshore Energy and Storage Summit (OSES). IEEE, pp. 1–6. DOI: https://doi.org/10.1109/OSES.2019.8867345
  • Zhang, Y., Zhao, X., Wei, X., 2020. Robust structural control of an underactuated floating wind turbine. Wind Energy 23 (12), 2166–2185. DOI: https://doi.org/10.1002/we.2550