Plasma Electrolytic Oxidation (PEO) as a Promising Technology for the Development of High-Performance Coatings on Cast Al-Si Alloys: A Review

  1. Fernández-López, Patricia 12
  2. Alves, Sofia A. 1
  3. San-Jose, Jose T. 2
  4. Gutierrez-Berasategui, Eva 1
  5. Bayón, Raquel 1
  1. 1 TEKNIKER, Basque Research and Technology Alliance (BRTA), Plasma Coating Technologies Unit, C/Iñaki Goenaga 5, 20600 Eibar, Spain
  2. 2 Department of Engineering in Mining, Metallurgy and Science of Materials, Faculty of Engineering in Bilbao, Building I, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
Revista:
Coatings

ISSN: 2079-6412

Ano de publicación: 2024

Volume: 14

Número: 2

Páxinas: 217

Tipo: Artigo

DOI: 10.3390/COATINGS14020217 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Coatings

Información de financiamento

Financiadores

  • Department of Education, Linguistic Policy and Culture of the Basque Government

Referencias bibliográficas

  • Robles Hernandez, F.C., Herrera Ramírez, J.M., and Mackay, R. (2017). Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications, Springer.
  • Kong, (2014), Adv. Mater. Res., 845, pp. 355
  • Gulec, (2015), Surf. Coat. Technol., 269, pp. 100, 10.1016/j.surfcoat.2014.12.031
  • Alves, (2021), Ceram. Int., 47, pp. 31238, 10.1016/j.ceramint.2021.07.300
  • Glazoff, M.V., Khvan, A.V., Zolotorevsky, V.S., Belov, N.A., and Dinsdale, A.T. (2019). Industrial and Perspective Casting Alloys, Elsevier.
  • Zamani, M. (2015). Al-Si Cast Alloys—Microstructure and Mechanical Properties at Ambient and Elevated Temperature Al-Si Cast Alloys—Microstructure and Mechanical Properties at Ambient and Elevated Temperature. [Ph.D. Thesis, Jönköping University].
  • Kumar, (2022), Mater. Lett., 314, pp. 131889, 10.1016/j.matlet.2022.131889
  • Shabestari, (2004), Mater. Sci. Eng. A, 383, pp. 289, 10.1016/S0921-5093(04)00832-9
  • Otani, (2017), J. Phase Equilibria Diffus., 38, pp. 298, 10.1007/s11669-017-0542-y
  • Cao, (2004), J. Mater. Sci., 39, pp. 2303, 10.1023/B:JMSC.0000019991.70334.5f
  • Rams, (2021), Encycl. Mater. Met. Alloy., 1, pp. 123
  • Berlanga-Labari, C., Biezma-Moraleda, M.V., and Rivero, P.J. (2020). Corrosion of Cast Aluminum Alloys: A Review. Metals, 10.
  • Yu, (2018), J. Alloys Compd., 731, pp. 444, 10.1016/j.jallcom.2017.10.074
  • Alves, (2022), Corros. Sci., 207, pp. 110548, 10.1016/j.corsci.2022.110548
  • Wang, (2020), Mater. Lett., 277, pp. 128384, 10.1016/j.matlet.2020.128384
  • Xue, (2002), ISIJ Int., 42, pp. 1273, 10.2355/isijinternational.42.1273
  • Peppas, (2021), Int. J. Thermofluids, 10, pp. 100082, 10.1016/j.ijft.2021.100082
  • Li, (2005), Surf. Coat. Technol., 200, pp. 1994, 10.1016/j.surfcoat.2005.08.019
  • Monteiro, (2022), Energy Rep., 8, pp. 338, 10.1016/j.egyr.2022.01.067
  • Luo, (2022), J. Mater. Process. Technol., 306, pp. 117606, 10.1016/j.jmatprotec.2022.117606
  • Zhang, (2022), Mater. Des., 221, pp. 110994, 10.1016/j.matdes.2022.110994
  • Javidani, (2014), Int. Mater. Rev., 59, pp. 132, 10.1179/1743280413Y.0000000027
  • Alves, (2022), Surf. Coat. Technol., 433, pp. 128146, 10.1016/j.surfcoat.2022.128146
  • Abdulwahab, A., Shrestha, S., Brooks, P., and Barton, D. (2014). Thermal Performance of Peo Coated Lightweight Brake Rotors Compared With Grey Cast Iron, International Federation of Automotive Engineering Societies (FISITA).
  • Li, K., Zhang, G., Yi, A., Zhu, W., Liao, Z., Chen, K., Li, W., and Luo, Z. (2022). Effects of Matrix Silicon Content on the Plasma Electrolytic Oxidation of Al-Si Alloys Using Different Power Modes. Crystals, 12.
  • Shakil, (2021), Results Mater., 10, pp. 100178, 10.1016/j.rinma.2021.100178
  • Yu, (2018), R. Soc. Open Sci., 5, pp. 172428, 10.1098/rsos.172428
  • Rogov, (2020), Surf. Coat. Technol., 399, pp. 126116, 10.1016/j.surfcoat.2020.126116
  • Sabatini, (2010), Mater. Des., 31, pp. 816, 10.1016/j.matdes.2009.07.053
  • Yoshida, (1995), Keikinzoku/J. Jpn. Inst. Light Met., 45, pp. 41, 10.2464/jilm.45.41
  • Mohedano, (2015), Appl. Surf. Sci., 346, pp. 57, 10.1016/j.apsusc.2015.03.206
  • Liang, (2013), Mater. Lett., 97, pp. 104, 10.1016/j.matlet.2013.01.112
  • Yerokhin, A., and Khan, R.H.U. (2010). Anodising of Light Alloys. Surf. Eng. Light Alloy. Alum. Magnes. Titan. Alloy., 83–109.
  • He, (2009), J. Alloys Compd., 471, pp. 395, 10.1016/j.jallcom.2008.03.114
  • Nagumothu, (2019), Trans. Indian Inst. Met., 72, pp. 47, 10.1007/s12666-018-1459-9
  • Akbar, (2017), Int. J. Eng. Work. Kambohwell Publ. Enterp., 4, pp. 114
  • Jiang, B.L., and Wang, Y.M. (2010). Plasma Electrolytic Oxidation Treatment of Aluminium and Titanium Alloys. Surf. Eng. Light Alloy. Alum. Magnes. Titan. Alloy., 110–154.
  • Aliofkhazraei, (2021), Appl. Surf. Sci. Adv., 5, pp. 100121, 10.1016/j.apsadv.2021.100121
  • Chaharmahali, (2020), J. Magnes. Alloy., 8, pp. 799, 10.1016/j.jma.2020.05.001
  • Guo, (2022), Surf. Coat. Technol., 429, pp. 127938, 10.1016/j.surfcoat.2021.127938
  • Apelfeld, (2016), J. Phys. Conf. Ser., 748, pp. 2, 10.1088/1742-6596/748/1/012019
  • Babaei, (2020), Surf. Interfaces, 21, pp. 100719, 10.1016/j.surfin.2020.100719
  • Antonio, (2019), Surf. Coat. Technol., 357, pp. 698, 10.1016/j.surfcoat.2018.10.079
  • Wang, (2009), J. Alloys Compd., 481, pp. 725, 10.1016/j.jallcom.2009.03.098
  • Wang, (2009), Curr. Appl. Phys., 9, pp. 1067, 10.1016/j.cap.2008.12.004
  • Malinovschi, (2016), Surf. Coat. Technol., 296, pp. 96, 10.1016/j.surfcoat.2016.04.007
  • Wu, (2020), J. Mater. Sci. Technol., 50, pp. 75, 10.1016/j.jmst.2019.12.031
  • Pezzato, (2016), Surf. Interface Anal., 48, pp. 729, 10.1002/sia.5983
  • Martin, (2013), Surf. Coat. Technol., 221, pp. 70, 10.1016/j.surfcoat.2013.01.029
  • An, (2020), Trans. Nonferrous Met. Soc. China (Engl. Ed.), 30, pp. 883, 10.1016/S1003-6326(20)65262-1
  • Dehnavi, (2014), Surf. Coat. Technol., 251, pp. 106, 10.1016/j.surfcoat.2014.04.010
  • Sieber, M., Simchen, F., Morgenstern, R., Scharf, I., and Lampke, T. (2018). Plasma Electrolytic Oxidation of High-Strength Aluminium Alloys—Substrate Effect on Wear and Corrosion Performance. Metals, 8.
  • Mohedano, (2020), Surf. Coat. Technol., 402, pp. 126317, 10.1016/j.surfcoat.2020.126317
  • Xie, (2017), Trans. Nonferrous Met. Soc. China (Engl. Ed.), 27, pp. 336, 10.1016/S1003-6326(17)60038-4
  • Shirani, (2020), Surf. Coatings Technol., 397, pp. 126016, 10.1016/j.surfcoat.2020.126016
  • Wang, (2018), Electron. Theses Diss., 116, pp. 7405
  • Clyne, (2019), Int. Mater. Rev., 64, pp. 127, 10.1080/09506608.2018.1466492
  • Pezzato, (2019), Surf. Coat. Technol., 366, pp. 114, 10.1016/j.surfcoat.2019.03.023
  • Li, T., Li, L., Qi, J., and Chen, F. (2020). Corrosion Protection of Ti6Al4V by a Composite Coating with a Plasma Electrolytic Oxidation Layer and Sol-Gel Layer Filled with Graphene Oxide. Prog. Org. Coat., 144.
  • Phuong, (2017), Surf. Coat. Technol., 309, pp. 86, 10.1016/j.surfcoat.2016.11.055
  • Curran, (2007), Surf. Coat. Technol., 201, pp. 8683, 10.1016/j.surfcoat.2006.06.050
  • Wang, (2016), J. Alloys Compd., 657, pp. 703, 10.1016/j.jallcom.2015.10.139
  • Dou, (2016), J. Electrochem. Soc., 163, pp. C917, 10.1149/2.1141614jes
  • Lee, (2020), Appl. Surf. Sci., 516, pp. 146049, 10.1016/j.apsusc.2020.146049
  • Stefanov, (2016), Appl. Surf. Sci., 370, pp. 218, 10.1016/j.apsusc.2016.02.131
  • (2016), Surf. Coat. Technol., 305, pp. 192, 10.1016/j.surfcoat.2016.08.045
  • Chen, (2019), Mater. Res. Express, 6, pp. 086425, 10.1088/2053-1591/ab1abc
  • Yeung, (2016), RSC Adv., 6, pp. 12688, 10.1039/C5RA22178A
  • Molaei, (2022), J. Magnes. Alloy., 10, pp. 81, 10.1016/j.jma.2021.05.020
  • Gnedenkov, (2014), J. Taiwan Inst. Chem. Eng., 45, pp. 3104, 10.1016/j.jtice.2014.03.022
  • Cordeiro, (2019), J. Alloys Compd., 770, pp. 1038, 10.1016/j.jallcom.2018.08.154
  • Sluginov, (1880), Russ. Phys. Chem. Soc, 12, pp. 193
  • Snezhko, (1980), Zashch. Met., 16, pp. 365
  • Markov, (1983), Izv. Akad. Nauk SSSR Neorg. Mater., 19, pp. 1110
  • Malyshev, (1985), Fiz. Khim. Obrab. Mater., 1, pp. 82
  • Dittrich, (1984), Cryst. Res. Technol., 19, pp. 93, 10.1002/crat.2170190117
  • Krysmann, (1984), Cryst. Res. Technol., 19, pp. 973, 10.1002/crat.2170190721
  • Yerokhin, (1998), Surf. Coatings Technol., 110, pp. 140, 10.1016/S0257-8972(98)00694-X
  • Yerokhin, (1999), Surf. Coatings Technol., 122, pp. 73, 10.1016/S0257-8972(99)00441-7
  • Dehnavi, (2013), Surf. Coatings Technol., 226, pp. 100, 10.1016/j.surfcoat.2013.03.041
  • Chaharmahali, (2021), J. Magnes. Alloy., 9, pp. 21, 10.1016/j.jma.2020.07.004
  • Tang, (2012), Curr. Appl. Phys., 12, pp. 1259, 10.1016/j.cap.2012.03.003
  • Simchen, (2017), Surf. Coatings Technol., 315, pp. 205, 10.1016/j.surfcoat.2017.02.041
  • Zhang, (2010), Surf. Coatings Technol., 205, pp. 1508, 10.1016/j.surfcoat.2010.10.015
  • Pan, (2022), Surf. Coatings Technol., 431, pp. 128035, 10.1016/j.surfcoat.2021.128035
  • Arunnellaiappan, (2016), Surf. Coatings Technol., 307, pp. 735, 10.1016/j.surfcoat.2016.09.043
  • Rogov, (2021), Ceram. Int., 47, pp. 34137, 10.1016/j.ceramint.2021.08.324
  • Tsai, D.S., and Chou, C.C. (2018). Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation. Metals, 8.
  • Gao, (2014), Appl. Surf. Sci., 316, pp. 558, 10.1016/j.apsusc.2014.08.035
  • Kaseem, (2017), Sci. Rep., 7, pp. 2378, 10.1038/s41598-017-02702-3
  • Rogov, (2019), Electrochim. Acta, 317, pp. 221, 10.1016/j.electacta.2019.05.161
  • Mohedano, (2018), Surf. Coatings Technol., 334, pp. 328, 10.1016/j.surfcoat.2017.11.058
  • Aliasghari, (2020), Surf. Coatings Technol., 393, pp. 125838, 10.1016/j.surfcoat.2020.125838
  • Urban, M. (2014). Plasma Electrolytic Oxidation of Magnesium Alloys for Automotive Applications. [Ph.D. Thesis, The University of Manchester].
  • Hussein, (2013), Electrochim. Acta, 112, pp. 111, 10.1016/j.electacta.2013.08.137
  • Li, Q., Liang, J., and Wang, Q. (2013). Plasma Electrolytic Oxidation Coatings on Lightweight Metals. Mod. Surf. Eng. Treat.
  • Zhu, (2019), Surf. Coatings Technol., 361, pp. 176, 10.1016/j.surfcoat.2019.01.024
  • Hakimizad, (2017), Surf. Coatings Technol., 324, pp. 208, 10.1016/j.surfcoat.2017.05.068
  • Lonyuk, (2007), Surf. Coatings Technol., 201, pp. 8688, 10.1016/j.surfcoat.2006.02.002
  • Kaseem, (2021), Prog. Mater. Sci., 117, pp. 100735, 10.1016/j.pmatsci.2020.100735
  • Toulabifard, A., Rahmati, M., Raeissi, K., Hakimizad, A., and Santamaria, M. (2020). The Effect of Electrolytic Solution Composition on the Structure, Corrosion, and Wear Resistance of Peo Coatings on Az31 Magnesium Alloy. Coatings, 10.
  • Zhu, (2016), Electrochim. Acta, 208, pp. 296, 10.1016/j.electacta.2016.04.186
  • Blawert, (2012), Surf. Coatings Technol., 213, pp. 48, 10.1016/j.surfcoat.2012.10.013
  • Vijh, (1971), Corros. Sci., 1, pp. 411, 10.1016/S0010-938X(71)80125-7
  • Ikonopisov, (1977), Electrochim. Acta, 22, pp. 1077, 10.1016/0013-4686(77)80042-X
  • Albella, (1984), J. Electrochem. Soc., 131, pp. 1101, 10.1149/1.2115758
  • Albella, (1987), Electrochim. Acta, 32, pp. 255, 10.1016/0013-4686(87)85032-6
  • Ingenieurwissenschaften, D. (2018). Der Simulation of Plasma Electrolytic Oxidation (PEO) of AM50 Mg Alloys and Its Experimental Validation. Dissertation, 154.
  • Wang, (2010), Surf. Coatings Technol., 205, pp. 1651, 10.1016/j.surfcoat.2010.10.022
  • Xue, (2000), Thin Solid Films, 372, pp. 114, 10.1016/S0040-6090(00)01026-9
  • Molak, (2019), Surf. Coatings Technol., 380, pp. 125040, 10.1016/j.surfcoat.2019.125040
  • Yaakop, N. (2018). Plasma Electrolytic Oxidation of Aluminium for Power Electronics Applications, The University of Manchester.
  • Monfort, (2007), Surf. Coatings Technol., 201, pp. 8671, 10.1016/j.surfcoat.2006.05.044
  • Wang, (2018), J. Alloys Compd., 753, pp. 272, 10.1016/j.jallcom.2018.04.077
  • Wang, (2019), J. Alloys Compd., 798, pp. 129, 10.1016/j.jallcom.2019.05.253
  • Huang, (2019), Mod. Concepts Mater. Sci., 2, pp. 000526
  • Zhu, (2021), Surf. Interfaces, 25, pp. 101186, 10.1016/j.surfin.2021.101186
  • Barati, (2022), Surf. Coatings Technol., 437, pp. 128345, 10.1016/j.surfcoat.2022.128345
  • Rogov, A.B., Nemcova, A., Hashimoto, T., Matthews, A., and Yerokhin, A. (2022). Analysis of Electrical Response, Gas Evolution and Coating Morphology during Transition to Soft Sparking PEO of Al. Surf. Coatings Technol., 128142.
  • Rogov, (2017), Langmuir, 33, pp. 11059, 10.1021/acs.langmuir.7b02284
  • Mohedano, (2016), Surf. Interface Anal., 48, pp. 953, 10.1002/sia.5815
  • Martin, (2015), Surf. Coatings Technol., 269, pp. 36, 10.1016/j.surfcoat.2014.11.001
  • Guan, (2008), Surf. Coatings Technol., 202, pp. 4602, 10.1016/j.surfcoat.2008.03.031
  • Nie, (2002), Surf. Coatings Technol., 149, pp. 245, 10.1016/S0257-8972(01)01453-0
  • Cheng, (2021), Trans. Nonferrous Met. Soc. China (English Ed.), 31, pp. 3677, 10.1016/S1003-6326(21)65756-4
  • Wang, (2022), Surf. Coatings Technol., 435, pp. 128246, 10.1016/j.surfcoat.2022.128246
  • Oh, (2009), Surf. Coatings Technol., 204, pp. 141, 10.1016/j.surfcoat.2009.07.002
  • Cheng, (2014), Electrochim. Acta, 138, pp. 417, 10.1016/j.electacta.2014.06.122
  • Xu, (2009), Appl. Surf. Sci., 255, pp. 9531, 10.1016/j.apsusc.2009.07.090
  • Khan, (2010), Surf. Coatings Technol., 205, pp. 1679, 10.1016/j.surfcoat.2010.04.052
  • Rogov, (2018), J. Phys. D Appl. Phys., 51, pp. 405303, 10.1088/1361-6463/aad979
  • Matykina, (2017), Trans. Nonferrous Met. Soc. China (English Ed.), 27, pp. 1439, 10.1016/S1003-6326(17)60166-3
  • Liu, (2018), Surf. Coatings Technol., 352, pp. 15, 10.1016/j.surfcoat.2018.07.080
  • Molaei, (2022), Ceram. Int., 48, pp. 6322, 10.1016/j.ceramint.2021.11.175
  • Wang, (2020), Surf. Coatings Technol., 381, pp. 125214, 10.1016/j.surfcoat.2019.125214
  • Cheng, (2015), Surf. Coatings Technol., 269, pp. 74, 10.1016/j.surfcoat.2014.12.078
  • Sharma, (2017), J. Mater. Eng. Perform., 26, pp. 5032, 10.1007/s11665-017-2916-z
  • Yang, (2019), Ceram. Int., 45, pp. 19388, 10.1016/j.ceramint.2019.06.191
  • Sundararajan, (2003), Surf. Coatings Technol., 167, pp. 269, 10.1016/S0257-8972(02)00918-0
  • Lv, (2006), Appl. Surf. Sci., 253, pp. 2947, 10.1016/j.apsusc.2006.06.036
  • Erfanifar, (2017), Mater. Chem. Phys., 185, pp. 162, 10.1016/j.matchemphys.2016.10.019
  • Sabouri, (2018), Surf. Coatings Technol., 334, pp. 543, 10.1016/j.surfcoat.2017.10.045
  • Ehteshamzadeh, (2012), J. Mater. Eng. Perform., 21, pp. 2195, 10.1007/s11665-012-0151-1
  • Mohedano, (2019), Coatings, 9, pp. 6
  • Walsh, (2009), Trans. Inst. Met. Finish., 87, pp. 122, 10.1179/174591908X372482
  • Habazaki, (2012), Appl. Surf. Sci., 259, pp. 711, 10.1016/j.apsusc.2012.07.104
  • Anawati, (2021), Surf. Coatings Technol., 426, pp. 127786, 10.1016/j.surfcoat.2021.127786
  • Wu, (2022), Appl. Surf. Sci., 573, pp. 151629, 10.1016/j.apsusc.2021.151629
  • Hussein, (2010), Surf. Coatings Technol., 205, pp. 1659, 10.1016/j.surfcoat.2010.08.059
  • Li, (2007), Surf. Coatings Technol., 201, pp. 8702, 10.1016/j.surfcoat.2007.06.010
  • Kalkanci, (2008), Surf. Coatings Technol., 203, pp. 15, 10.1016/j.surfcoat.2008.07.015
  • Lu, (2016), Surf. Coatings Technol., 307, pp. 1165, 10.1016/j.surfcoat.2016.08.055
  • Lu, (2015), Corros. Sci., 101, pp. 201, 10.1016/j.corsci.2015.09.016
  • Lu, (2016), Electrochim. Acta, 187, pp. 20, 10.1016/j.electacta.2015.11.033
  • Tu, (2019), Surf. Coat. Technol., 372, pp. 34, 10.1016/j.surfcoat.2019.05.012
  • Tang, (2015), Surf. Coatings Technol., 264, pp. 105, 10.1016/j.surfcoat.2015.01.013
  • Sreekanth, (2012), Ceram. Int., 38, pp. 4607, 10.1016/j.ceramint.2012.02.040
  • Song, (2011), Mater. Corros., 62, pp. 1124, 10.1002/maco.201006050
  • Sreekanth, (2013), Surf. Coatings Technol., 222, pp. 31, 10.1016/j.surfcoat.2013.01.056
  • Hakimizad, (2018), Surf. Coatings Technol., 340, pp. 210, 10.1016/j.surfcoat.2018.02.042
  • Wang, (2013), Appl. Surf. Sci., 280, pp. 151, 10.1016/j.apsusc.2013.04.115
  • Hakimizad, (2018), Electrochim. Acta, 284, pp. 618, 10.1016/j.electacta.2018.07.200
  • Yao, (2014), Surf. Coatings Technol., 253, pp. 166, 10.1016/j.surfcoat.2014.05.032
  • Li, (2015), Vacuum, 111, pp. 131, 10.1016/j.vacuum.2014.10.008
  • Lukiyanchuk, (2016), Surf. Coatings Technol., 307, pp. 1183, 10.1016/j.surfcoat.2016.06.076
  • Hwang, (2010), J. Alloys Compd., 504, pp. S527, 10.1016/j.jallcom.2010.02.074
  • Wang, (2017), Surf. Coatings Technol., 321, pp. 164, 10.1016/j.surfcoat.2017.04.038
  • Yeh, (2016), Surf. Coatings Technol., 287, pp. 61, 10.1016/j.surfcoat.2015.12.091
  • Xue, (2007), Appl. Surf. Sci., 253, pp. 6118, 10.1016/j.apsusc.2007.01.018
  • Krishtal, (2004), Met. Sci. Heat Treat., 46, pp. 377, 10.1023/B:MSAT.0000049810.75325.f9
  • Wang, (2006), Thin Solid Films, 494, pp. 211, 10.1016/j.tsf.2005.07.184
  • Nie, (2012), J. Vac. Sci. Technol. A Vacuum Surf. Film., 30, pp. 061402, 10.1116/1.4750474
  • Moshrefifar, M., Ebrahimifar, H., and Hakimizad, A. (2022). Systematic Investigation of Silicon Content Effects on the PEO Coatings’ Properties on Al–Si Binary Alloys in Silicate-Based and Tungstate-Containing Electrolytes. Coatings, 12.
  • Student, M., Pohrelyuk, I., Padgurskas, J., Posuvailo, V., Hvozdets’kyi, V., Zadorozhna, K., Chumalo, H., Veselivska, H., Kovalchuk, I., and Kychma, A. (2023). Influence of Plasma Electrolytic Oxidation of Cast Al-Si Alloys on Their Phase Composition and Abrasive Wear Resistance. Coatings, 13.
  • Rams, (2021), Surf. Coatings Technol., 420, pp. 127339, 10.1016/j.surfcoat.2021.127339
  • Pezzato, (2019), Key Eng. Mater., 813, pp. 298, 10.4028/www.scientific.net/KEM.813.298
  • Pezzato, (2020), Surf. Coatings Technol., 404, pp. 126477, 10.1016/j.surfcoat.2020.126477
  • Li, (2015), Chin. J. Chem. Eng., 23, pp. 1572, 10.1016/j.cjche.2015.06.004
  • Li, K., Li, W., Yi, A., Zhu, W., Liao, Z., Chen, K., and Li, W. (2021). Tuning the Surface Characteristic of Al-Si Alloys and Its Impacts on the Formation of Micro Arc Oxidation Layers. Coatings, 11.
  • Li, (2019), J. Alloys Compd., 790, pp. 650, 10.1016/j.jallcom.2019.03.217
  • Hu, (2014), Surf. Coatings Technol., 258, pp. 275, 10.1016/j.surfcoat.2014.09.012
  • Polunin, (2021), Surf. Coatings Technol., 423, pp. 127603, 10.1016/j.surfcoat.2021.127603
  • Krishtal, (2022), Surf. Coatings Technol., 441, pp. 128556, 10.1016/j.surfcoat.2022.128556