Geometry optimisation of highly crowned gear couplings working in high misalignment applications to reduce tooth root stresses
- Iñurritegui, Aurea 1
- Larrañaga, Jon 1
- Aitor Arana 1
- Ibai Ulacia 1
-
1
Universidad de Mondragón/Mondragon Unibertsitatea
info
Datum der Publikation: 2023
Ausgabe: 387
Nummer: 01004
Kongress: MATEC Web Conf. Volume 387, 2023 9th International BAPT Conference “Power Transmissions 2023”
Art: Konferenz-Beitrag
Zusammenfassung
Crowned gear couplings are mechanical components used to transmit power between misaligned rotating shafts. Their geometry is characterised by a significant longitudinal crowning to accommodate angular misalignment. Recent studies reveal that high misalignments drastically reduce the number of teeth in contact and lead to an uneven load distribution among engaged teeth. Consequently, tooth root fracture becomes a common failure mode. Current standards only address misalignment angles below 1.5°, treating applications with greater misalignments as special cases without design guidelines or stress prediction methods. This study proposes a procedure to optimize the design of crowned gear couplings working in high misalignment applications by determining tooth root stress distribution. The geometry is analytically generated, while finite element models are used to calculate the stress distribution. Experimental validation is performed using a dedicated test rig. The obtained results are very close to the ones from the numerical model, demonstrating the suitability of the method for crowned gear couplings operating under significant angular misalignments. The optimized design reduces tooth root stress by 50%, which will increase the fatigue life of the component or enable the application of higher torque values.
Bibliographische Referenzen
- Hahn S., Encyclopedia of Automotive Engineering (2014)
- Alfares M. et al., Mech. Mach. Theory 41 (10) (2006)
- Iñurritegui A. et al., Mech. Mach. Theory 164 (2021)
- Iñurritegui A. et al., Mech. Mach. Theory 183 (2023)
- Guan Y., et al., Mech. Mach. Theory 136 (2019)
- Ohshima F., et al., Trans. Jpn. Soc. Mech. Eng. C 78 (786) (2012)
- AGMA 945-1-B20, “Splines – Design and Application”, American Gear Manufacturers Association, 2020
- Henriot G., et al., Accouplements, alignement des axes, Engrenages : Conception, Fabrication, Mise en œuvre (1983)
- Cedoz R., et al., Society of Automotive Engineers (1994)
- ISO 21771, “Gears-Cylindrical Involute Gears and Gear Pairs-Concepts and Geometry”, International Organization for Standardization, 2007
- Guan Y., et al., Mech. Mach. Theory 126 (2018)
- de Caires B., PhD thesis, Brigham Young University (2006)
- Guan Y., et al., J. Mech. Eng. Sci. (2018)
- Medina S., et al., J. Tribol. 124 (2) (2002)
- Silvers J., et al., Proceeding of the FTM (2010)
- Curà F., et al., Proc. Inst. Mech. Eng., Part C 227 (10) (2013)
- Iñurritegui A., et al., Mech. Mach. Theory 179 (2023)
- Nakashima K., Trans. Jpn. Soc. Mech. Eng. C 502 (54) (1988)
- Dudley D., Prod. Eng. 28 (1957)
- ISO 4156, “Straight Cylindrical Involute Splines”, International Organization for Standardization, 2005
- Larrañaga J., et al., Proceedings of the 5th Inter. Conf. Power Transmission-BAPT (2016)
- Guo Y., et al., Mech. Mach. Theory 98 (2016)
- Cuffaro V., et al., Proc. Inst. Mech. Eng., Part C 226 (12) (2012)
- Benatar M., et al., J. Adv. Mech. Des. 11 (6) (2017)
- Guan Y., et al., J. Adv. Mech. Des. 5 (2021)
- Cuffaro V., et al., Key Engineering Materials (2014)
- Mancuso J.R., Technology & Engineering (1986)
- Iñurritegui A., et al., Mech. Mach. Theory 173 (2022)
- Herbstritt W., et al., Iron Steel Eng. 76 (7) (1999)
- Litvin F., et al., Gear Geometry and Applied Theory (2004)
- Argyris, (2002), Comput. Methods Appl. Mech. Eng., 191, pp. 11
- Gonzalez-Perez I., et al., Transactions of ASME, J. Mech. Des. 140 (2) (2017)
- MSC.Software, Marc 2019 Volume B: Element Library (2019)
- Petersen D., PhD thesis, TIB Hannover (1989)
- DIN 5466, “Splined joints, calculation of load capacity”, Deutsche Institut für Normung, 2002