Fretting: Review on the Numerical Simulation and Modeling of Wear, Fatigue and Fracture

  1. Llavori, Iñigo
  2. Esnaola, Jon Ander
  3. Zabala, Alaitz
  4. Larrañaga, Miren
  5. Gomez, Xabier
Libro:
Contact and Fracture Mechanics

Ano de publicación: 2018

Tipo: Capítulo de libro

DOI: 10.5772/INTECHOPEN.72675 GOOGLE SCHOLAR lock_openAcceso aberto editor

Resumo

This chapter presents a general background and the state of the art of numerical simulation and modeling of fretting phenomenon in terms of wear, fatigue and fracture. First, an introduction of fretting and its implications is exposed. Second, different methodologies for wear modeling and simulation are described and discussed. Afterwards, fatigue and fracture analysis approaches are revised. To that end, multiaxial fatigue parameters are introduced putting an emphasis on the physical basis of the fretting phenomena and the suitability of each model. On the other hand, the propagation phase based on linear elastic fracture mechanics (LEFM) via the finite element method (FEM) and the eXtended finite element method (X-FEM) analysis methods is presented and compared. Finally, different approaches and latest developments for fretting fatigue lifetime prediction are presented and discussed.

Referencias bibliográficas

  • Waterhouse RB. Fretting wear. Wear. 1984;100:107-118
  • Collins JA, Marco SM. The effect of stress direction during fretting on subsequent fatigue life. Proceedings of ASTM. 1964;64:547-560
  • Dobromirski JM. Variables in the Fretting Process: Are There 50 of Them? Philadelphia, PA: ASTM; 1992
  • Vingsbo O, Söderberg S. On fretting maps. Wear. 1988;126:131-147
  • Hills DA, Nowell D. Mechanics of Fretting Fatigue. 1st ed. Springer Nederlands: Kluwer Academic Publisher; 1994
  • Sato J. Rercent trend in studies of fretting wear. Transaction of JSLE. 1995;30:853-855
  • Meng HC. Wear modelling: evaluation and categorization of wear models [thesis]. Ann Arbor: University of Michigan, USA; 1994
  • Meng HC, Ludema KC. Wear models and predictive equations: Their form and content. Wear. 1995;181-183:443-457
  • Hsu SM, Shen MC, Ruff AW. Wear prediction for metals. Tribology International. 1997;30(5):377-383. PII: S0301-679X(96)00067-9
  • Blau PJ. Fifty years of research on the wear of metals. Tribology International. 1997;30(5):321-331. PII: S0301-679X(96)00062-X
  • Archard JF, Hirst W. The wear of metals under unlubricated conditions. Proceedings of the Royal Society. 1956;A236:387-400
  • Fouvry S, Liskiewicz T, Kapsa P, Hannel S, Sauger E. An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear. 2003;255:287-298. DOI: 10.1016S0043-1648(03)00117-0
  • McColl IR, Ding J, Leen SB. Finite element simulation and experimental validation of fretting wear. Wear. 2004;256:1114-1127. DOI: 10.1016/j.wear.2003.07.001
  • Madge JJ, Leen SB, McColl IR, Shipway PH. Contact-evolution based prediction of fretting fatigue life: Effect of slip amplitude. Wear. 2007;262:1159-1170. DOI: 10.1016/j.wear.2006.11.004
  • Cruzado A, Urchegui MA, Gómez X. Finite element modelling and experimental validation of fretting wear scars in thin steel wires. Wear. 2012;289:26-38
  • Cruzado A, Leen SB, Urchegui MA, Gómez X. Finite element simulation of fretting wear and fatigue in thin steel wires. International Journal of Fatigue. 2013;55:7-21
  • Cruzado A, Urchegui MA, Gómez X. Finite element modeling of fretting wear scars in the thin steel wires: Application in crossed cylinder arrangement. Wear. 2014;318:98-105
  • Zhang T, Harrison NM, McDonnell PF, McHugh PE, Leen SB. A finite element methodology for wear-fatigue analysis for modular hip himplants. Tribology International. 2013;65:113-127
  • Tongyan Y, Wahab MA. Finite element analysis of stress singularity in partial slip and gros sliding regimes in fretting wear. Wear. 2014;321:53-63
  • Castillo E, Fernández Canteli A. A Unified Statistical Methodology for Modelling Fatigue Damage. Springer; 2009
  • Muñiz Calvente M, Blasón S, de Jesús A, Correia J, Fernández Canteli A. A probabilistic approach for multiaxial fatigue criteria. In: Proceedings of the International Conference on Multiaxial Fatigue and Fracture (ICMFF11); June 2016; Sevilla
  • Socie D, Marquis G. Multiaxial Fatigue. Warrendale, PA: SAE; 2000. ISBN: 978-0768004533
  • Goh CH, Wallace JM, Neu RW, McDowell DL. Polycrystal plasticity simulations of fretting fatigue. International Journal of Fatigue. 2001;23:S423-S435. PII: S0142-1123(01)00150-5
  • Goh CH, Neu RW, McDowell DL. Crystallographic plasticity in fretting of Ti-6AL-4V. International Journal of Plasticity. 2003;19:1627-1650. PII: S0749-6419(02)00039-6
  • McDowell DL, Dunne FPE. Microstructure-sensitive computational modeling of fatigue crack formation. International Journal of Fatigue. 2010;32:1521-1542. DOI: 10.1016/j.ijfatigue.2010.01.003
  • McCarthy OJ, McGarry JP, Leen SB. A finite element study of microstructure-sensitive plasticity and crack nucleation in fretting. Computational Materials Science. 2011;50:2439-2458. DOI: 10.1016/j.commatsci.2011.03.026
  • McCarthy OJ, McGarry JP, Leen SB. Micro-mechanical modelling of fretting fatigue crack initiation and wear in Ti-6Al-4V. International Journal of Fatigue. 2014;62:180-193. DOI: 10.1016/j.ijfatigue.2013.04.019
  • McCarthy OJ, McGarry JP, Leen SB. Microstructure-sensitive prediction and experimental validation of fretting fatigue. Wear. 2013;305:100-114. DOI: 10.1016/j.wear.2013.05.012
  • McCarthy OJ, McGarry JP, Leen SB. The effect of grain orientation on fretting fatigue plasticity and life prediction. Tribology International. 2014;76:100-115. DOI: 10.1016/j.triboint.2013.09.023
  • Ashton PJ, Harte AM, Leen SB. Statistical grain size effects in fretting crack initiation. Tribology International. 2017;108:75-86. DOI: 10.1016/j.triboint.2016.09.022
  • Zhang T, McHugh PE, Leen SB. Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. International Journal of Fatigue. 2012;44:260-272. DOI: 10.1016/j.ijfatigue.2012.04.011
  • Hojjati-Talemi R, Wahab MA. Fretting fatigue crack initiation lifetime predictor tool: Using damage mechanics approach. Tribology International. 2013;60:176-186. DOI: 10.1016/j.triboint.2012.10.028
  • Hojjati-Talemi R, Wahab MA, De Pauw J, De Baets P. Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribology International. 2013;76:73-91. DOI: 10.1016/j.triboint.2014.02.017
  • Yokobori T, Yamanouchi H, Yamamoto S. Low cycle fatigue of thin-walled hollow cylindrical specimens of mild steel in uni-axial and torsional tests at constant strain amplitude. International Journal of Fracture Mechanics. 1965;1(1):3-13. DOI: 10.1007/BF00184149
  • Socie DF, Shield TW. Mean stress effects in biaxial fatigue of Inconel 718. ASME. 1984;106:227-232
  • McDiarmid DL. A shear stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction. Fatigue & Fracture of Engineering Materials & Structures. 1994;17(12):1475-1484
  • Findley WN. A theory for the effect of mean stress on fatigue of metals and their combined torsion and axial load or bending. Journal of Engineering for Industry. 1959:301-306
  • Brown MW, Miller KJ. A theory for fatigue failure under multiaxial stress-strain conditions. Proceedings of the Institution of Mechanical Engineers. 1973;187(1):65-73
  • Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue & Fracture of Engineering Materials & Structures. 1988;11(3):149-165
  • Smith RN, Watson P, Topper TH. A stress-strain parameter for the fatigue of metals. Journal of Materials. 1970;5(4):767-778
  • You BR, Lee SB. A critical review on multiaxial fatigue assessments of metals. International Journal of Fatigue. 1996;18(4):235-244. PII: S0142-1123(96)00002-3
  • Das J, Sivakumar SM. An evaluation of multiaxial fatigue life assessment methods of engineering components. International Journal of Pressure Vessels and Piping. 1999;76:741-746 PII: S0308-0161(99)00053-8
  • Araújo JA, Nowell D. The effect of rapidly varying contact stress fields on fretting fatigue. International Journal of Fatigue. 2002;24:763-775. PII: S0142-1123(01)00191-8
  • Szolwinski MP, Farris TN. Mechanics of fretting fatigue crack formation. Wear. 1996;198:93-107. PII: S0043-1648(96)06937-2
  • Nowell D, Dini Dm Hills DA. Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics. 2006;73:207-222. DOI: 10.1016/j.engfracmech.2005.01.013
  • Navarro C, Muñoz S, Domínguez J. On the use of multiaxial fatigue criteria for fretting fatigue life assessment. International Journal of Fatigue. 2008;30:32-44. DOI: 10.1016/j.ijfatigue.2008.02.018
  • Giner E, Navarro C, Sabsabi M, Tur M, Domínguez J, Fuenmayor FJ. Fretting fatigue life prediction using the extended finite element method. International Journal of Mechanical Sciences. 2011;53:217-225. DOI: 10.1016/j.ijmecsci.2011.01.002
  • Gandiolle C, Garcin S, Fouvry S. A non-collinear fretting-fatigue experiment to compare multiaxial fatigue criteria: Critical shear plane strategy is better than invariant formulations. Tribology International. 2017;108:57-68. DOI: 10.1016/j.triboint.2016.09.011
  • Araújo JA, Susmel L, Pires MST, Castro FC. A multiaxial stress-based critical distance methodology to estimate fretting fatigue life. Tribology International. 2017;108:2-6. DOI: 10.1016/j.triboint.2016.07.028
  • Vázquez J, Navarro C, Domínguez J. Analysis of fretting fatigue initial crack path in Al7075-T651 using cylindrical contact. Tribology International. 2017;108:87-94. DOI: 10.1016/j.triboint.2016.09.023
  • Taylor D. The Theory of Critical Distances. A New Perspective in Fracture Mechanics. 1st ed. Oxford: Elsevier; 2017. ISBN: 978-0-08-044478-9
  • Susmel L. Multiaxial Notch Fatigue. From Nominal to Local Stress/Strain Quantities. 1st ed. Cambridge: Woodhead Publishing Limited; 2009. ISBN: 978-1-84569-582-8
  • Anderson TL. Fracture Mechanics. Fundamentals and Applications. 3rd ed. Boca Raton: CRC Press; 2005. ISBN: 978-1-4200-5821-5
  • Gdoutos EE. Fracture Mechanics. An Introduction. 2nd ed. Netherlands: Springer; 2005. ISBN: 1-4020-2863-6
  • Saxena A. Nonlinear Fracture Mechanics for Engineers. 1st ed. Boca Raton: CRC Press; 1998. ISBN: 0-8493-9496-1
  • Williams ML. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics. 1957;24(1):109-114
  • Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics. 1957;24(1):361-364
  • Navarro C, Muñoz S, Domínguez J. Propagation in fretting fatigue from a surface defect. Tribology International. 2006;39:1149-1157. DOI: 10.1016/j.triboint.2006.02.004
  • Paris PC, Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering. ASME. 1963;85(4):528-533
  • Hatthori T, Nakamura M, Watanabe T. Simulation of fretting-fatigue life using stress-singularity parameters and fracture mechanics. Tribology International. 2003;36:87-97. PII: S0301-679X(02)00141-X
  • Erdogan F, Sih GC. On the crack extension path in plates under loading and transverse shear. Journal of Basic Engineering. ASME. 1963;85:519-527
  • Sih GC. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture. 1974;10(3):305-321
  • Giner E, Sabsabi M, Ródenas JJ, Fuenmayor FJ. Direction of crack propagation in a complete contact fretting-fatigue problem. International Journal of Fatigue. 2014;58:172-180. DOI: 10.1016/j.ijfatigue.2013.03.001
  • Murakami Y. Stress Intensity Factors Handbook. 1st ed. Oxford: Pergamon Press; 1987. ISBN: 0080348092
  • Fett T. Stress Intensity Factors and Weight Functions for Special Crack Problems. 1st ed. Forschungszentrum Karlsruhe GmbH: Karlsruhe; 1997
  • Laham SA. Stress Intensity Factor and Limit Load Handbook. 2nd ed. British Energy Generation: Barnwood; 1998
  • Tada H, Paris PC, Irwin GR. The Stress Analysis of Cracks Handbook. 3rd ed. New York: ASME Press. 2000. ISBN: 0-7918-0153-5
  • Yau JF, Wang SS, Corten HT. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics. 1980;47:335-341
  • Li FZ, Shih CF, Needleman A. A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics. 1985;21(2):405-421
  • Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics. 1968;35(2):379-386
  • Melenk JM, Babuska I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering. 1996;139:289-314
  • Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering. 1999;46:131-150
  • Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics. 1988;79:12-49
  • Huang R, Sukumar N, Prévost JH. Modeling quasi-static crack growth with the extended finite element method part II: Numerical applications. International Journal of Solids and Structures. 2003;40:7539-7552. DOI: 10.1016/j.ijsolstr.2003.08.001
  • Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. 1st ed. New York: Springer; 2000. 7-8 p. ISBN: 0-387-95482-1
  • Giner E, Sukumar N, Tarancón JE, Fuenmayor FJ. An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics. 2009;76:347-368
  • Giannakopoulos AE, Suresh S. A three-dimensional analysis of fretting fatigue. Acta Materialia. 1998;46(1):177-192. PII: S1359-6454(97)00210-3
  • Giannakopoulos AE, Lindley TC, Suresh S. Application of Fracture Mechanics in Fretting Fatigue Life Assessment. 1st ed. Philadelphia: ASTM; 2000. 80-99 p. DOI: 10.1520/STP14723S
  • Szolwinski MP, Farris TN. Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear. 1998;221:24-36
  • Sum WS, Williams EJ, Leen SB. Finite element, critical-plane, fatigue life prediction of simple and complex contact configurations. International Journal of Fatigue. 2005;27:403-416
  • Houghton D, Wavish PM, Williams EJ, Leen SB. Multiaxial fretting fatigue testing and predicition for esplined couplings. International Jounal of Fatigue. 2009;31:1805-1815
  • Navarro C, Vázquez J, Domínguez J. A general model to estimate life in notches and fretting fatigue. Engineering Fracture Mechanics. 2011;78:1590-1601. DOI: 10.1016/j.engfracmech.2011.01.011
  • Gandiolle C, Fouvry S. Stability of critical distance approach to predict fretting fatigue cracking: A “lopt-bopt” concept. International Journal of Fatigue. 2016;82:199-210. DOI: 10.1016/j.ijfatigue.2015.07.016
  • Madge JJ, Leen SB, Shipway PH. A combined wear and crack nucleation-propagation methodology for fretting fatigue prediction. International Journal of Fatigue. 2008;30:1509-1528. DOI: 10.1016/j.ijfatigue.2008.01.002
  • Llavori I, Urchegui MA, Tato W, Gomez X. An all-in-one numerical methodology for fretting wear and fatigue life assessment. Frattura ed Integrità Strutturale (Fracture and Structural Integrity). 2016;37:87-93