Análisis de ciclo de vida en bloques de hormigóncomparación del impacto producido entre bloques tradicionales y con subproductos
- Madrid, Maggi 1
- García Frómeta, Yokasta 2
- Cuadrado, Jesús 1
- Blanco, Jesús María 1
- 1 University of the Basque Country, UPV/EHU
- 2 Pontificia Universidad Católica Madre y Maestra, Dominican Republic
ISSN: 0020-0883
Ano de publicación: 2022
Volume: 74
Número: 566
Tipo: Artigo
Outras publicacións en: Informes de la construcción
Resumo
Reusing by-products for the development of concrete blocks that are more sustainable and with better thermal properties, for the building sector is a necessity and a good alternative to develop in the construction sector. A life cycle analysis (LCA) was performed on the blocks with and without by-products, in order to quantify the environmental benefits that the incorporation of these by-products in the blocks would entail. The LCA was carried out in accordance with the provisions of EN-ISO 15804, which establishes the calculation rules for the analysis of construction products. This analysis was performed using the “Eco-it” software tool, with a scope from cradle to gate. Based on the results, it can be concluded that the partial replacement of fine aggregate by shavings and cement by lime sludge in the mix is an alternative way to obtain blocks that are more respectful with the environment and in turn with better thermal properties.
Referencias bibliográficas
- (1) Cetin, M., and Sevik, H. (2016). Change of air quality in Kastamonu city in terms of particulate matter and CO2 amount. Oxidation Communications, 39(4), 3394-3401.
- (2) Chalmers, P. (2014). Climate Change: Implications for Buildings. Key Findings from the Intergovernmental Panel on Climate Change Fifth Assessment Report. World Business Council for Sustainable Development, University of Cambridge’s Judge Business School, Institute for Sustainability Leadership.
- (3) European Environment Agency (2019). Trends and projections in Europe 2019: Tracking progress towards Europe’s climate and energy targets. Publications Office of the European Union, Ed. N.15. Luxembourg.
- (4) Eurostat EEA (2017). Greenhouse gas emission statistics - emission inventories.
- (5) Miller, S.A. (2018). Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing?. Journal of Cleaner Production, 178, 587-598.
- (6) Peraita, C. (2020). Así evolucionó la producción de hormigón preparado en 2019. Cemento Hormigón, 999, 13.
- (7) Miller, S.A., John, V.M., Pacca, S.A., and Horvath, A. (2018). Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 114, 115-124.
- (8) Cabrera, S., González, A., and Rotondaro, R. (2020). Resistencia a compresión en bloques de tierra comprimida. Comparación entre diferentes métodos de ensayo. Informes de la Construcción, 72(560), e360.
- (9) Pešta, J., Pavlů, T., Fořtová, K., and Kočí, V. (2020). Sustainable Masonry Made from Recycled Aggregates: LCA Case Study. Sustainability, 12(4), 1581.
- (10) Martín-Consuegra, F., Hernández-Aja, A., Oteiza, I., and Alonso, C. (2019). Distribución de la pobreza energética en la ciudad de Madrid (España). EURE (Santiago), 45 (135), 133-152.
- (11) Hendry, E.A.W. (2001). Masonry walls: materials and construction. Construction and Building Materials, 15(8), 323-330.
- (12) Como, M. (2017). Statics of historic masonry constructions. Springer, Cham.
- (13) Madrid, M., Orbe, A., Carré, H., and García, Y. (2018). Thermal performance of sawdust and lime-mud concrete masonry units. Construction and Building Materials, 169, 113-123.
- (14) Madrid, M., Orbe, A., Rojí, E., and Cuadrado, J. (2017). The effects of by-products incorporated in low-strength concrete for concrete masonry units. Construction and Building Materials, 153, 117-128.
- (15) Marceau, M., Nisbet, M.A., and Van Geem, M.G. (2006). Life cycle inventory of portland cement manufacture.
- (16) Herranz García, S., and García Navarro, J. (2017). Análisis de ciclo de vida de los paneles de lana mineral de vidrio para la construcción de conductos de climatización. Verificación externa. Informes de la Construcción, 69(548), e232.
- (17) Ros García, J.M., and Sanglier Contreras, G. (2017). Análisis del ciclo de vida de una unidad prototipo de vivienda de emergencia. La búsqueda del impacto nulo. Informes de la Construcción, 69(547), e211.
- (18) Vidal, R., Sánchez-Pantoja, N., and Martínez, G. (2019). Análisis del ciclo de vida de un edificio con estructura de madera contralaminada en Granada-España. Informes de la Construcción, 71(554), e289.
- (19) Calama-González, C.M., and Cañas Palop, C. (2019). Evaluación comparativa del ciclo de vida de cuatro soluciones constructivas diferentes para la rehabilitación de pisos de viguetas de madera con valor patrimonial. Informes de la Construcción, 71(556), e316.
- (20) Xia, B., Ding, T., and Xiao, J. (2020). Life cycle assessment of concrete structures with reuse and recycling strategies: A novel framework and case study. Waste Management, 105: 268-278.
- (21) Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., and Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125.
- (22) Kurda, R., Silvestre, J.D., and de Brito, J. (2018). Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, 139, 407-417.
- (23) Salgado, R.A., Apul, D., and Guner, S. (2020). Life cycle assessment of seismic retrofit alternatives for reinforced concrete frame buildings. Journal of Building Engineering, 28, 101064.
- (24) Visintin, P., Xie, T., and Bennett, B. (2020). A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 119243.
- (25) Huang, H., Wang, T., Kolosz, B., Andresen, J., Garcia, S., Fang, M., and Maroto-Valer, M.M. (2019). Life-cycle assessment of emerging CO2 mineral carbonation-cured concrete blocks: Comparative analysis of CO2 reduction potential and optimization of environmental impacts. Journal of Cleaner Production, 241, 118359.
- (26) ECO-it 1.4. (2001) Guía de utilización de ECO-it 1.4.
- (27) Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., and Van Zelm, R. (2009). A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. The Hague, Ministry of VROM. ReCiPe.
- (28) Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., and Troxler, T.G. (2014). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland.
- (29) Bhatty, J.I., Miller, F.M., Kosmatka, S.H., and Bohan, R. (2004). Innovations in Portland cement manufacturing. Portland Cement Association Washington eDC DC.
- (30) Huntzinger, D.N., and Eatmon, T.D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668-675.
- (31) Van den Heede, P., and De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431-442.
- (32) Petek Gursel, A., Masanet, E., Horvath, A., and Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48.
- (33) Cardim de Carvalho Filho, A. (2001). Análisis del ciclo de vida de productos derivados del cemento-Aportaciones al análisis de los inventarios del ciclo de vida del cemento. Universitat Politècnica de Catalunya. http://hdl.handle.net/2117/93218
- (34) Prusty, J.K., Patro, S.K., and Basarkar, S.S. (2016). Concrete using agro-waste as fine aggregate for sustainable built environment - A review. International Journal of Sustainable Built Environment, 5(2), 312-333.
- (35) Adebakin, I.H., Adeyemi, A.A., Adu, J.T., Ajayi, F.A., Lawal, A.A., and Ogunrinola, O.B. (2012). Uses of sawdust as admixture in production of low-cost and lightweight hollow sandcrete blocks. American journal of scientific and industrial research, 3(6), 458-463.
- (36) United States Environmental Protection Agency (EPA). (1994). Emission factor documentation for AP-42, section 11.6: Portland cement manufacturing, final report, EPA Contract 68-D2-0159, MRI Project No. 4601-01.
- (37) Kenny, M., and Oates, T. (2007). Lime and limestone. Kirk-Othmer Encyclopedia of Chemical Technology.
- (38) Blankendaal, T., Schuur, P., and Voordijk, H. (2014). Reducing the environmental impact of concrete and asphalt: a scenario approach. Journal of Cleaner Production, 66, 27-36.
- (39) Habert, G., Arribe, D., Dehove, T., Espinasse, L., and Le Roy, R. (2012). Reducing environmental impact by increasing the strength of concrete: quantification of the improvement to concrete bridges. Journal of Cleaner Production, 35, 250-262.
- (40) Molle, F., Wester, P., and Hirsch, P. (2010). River basin closure: Processes, implications and responses. Agricultural Water Management, 97(4), 569-577.
- (41) Smakhtin, V. (2008). Basin closure and environmental flow requirements. International Journal of Water Resources Development, 24(2), 227-233.
- (42) INTRON, onmental C. (2006). Environmental declaration Superplasticizing admixtures.
- (43) El Reguil S.L. (2008). Impacto ambiental de una planta de hormigón.
- (44) Babor, D., Plian, D., and Judele, L. (2009). Environmental impact of concrete. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 55(4), 27.
- (45) Turk, J., Cotič, Z., Mladenovič, A., and Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, 45, 194-205.
- (46) Hossain, M.U., Poon, C.S., Lo, I.M.C., and Cheng, J.C.P. (2016). Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. The International Journal of Life Cycle Assessment, 21(1), 70-84.
- (47) Blanco, J. M., García Frómeta, Y., Madrid, M., and Cuadrado, J. (2021). Thermal performance assessment of walls made of three types of sustainable concrete blocks by means of FEM and validated through an extensive measurement campaign. Sustainability, 13(1).