El abandono del pastoreo afecta negativamente a la calidad del pasto en pastizales atlánticos ibéricos

  1. Aldezabal, Arantza 1
  2. Pérez-López, Usue 1
  3. Laskurain, Nere Amaia 1
  4. Iñaki Odriozola Larrañaga
  1. 1 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU
  2. 2 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU - Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS
Revista:
Pirineos

ISSN: 0373-2568

Any de publicació: 2019

Número: 174

Pàgines: 42-42

Tipus: Article

DOI: 10.3989/PIRINEOS.2019.174002 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Pirineos

Resum

La calidad del pasto en los pastizales de montaña es un factor importante para mantener o mejorar el rendimiento animal. Estudios previos han identificado atributos vegetales beneficiosos para la nutrición animal; sin embargo, poco se sabe sobre su mantenimiento en comunidades vegetales. Nuestra principal hipótesis sostiene que el pastoreo favorece a las especies con una alta capacidad de rebrote y una baja eficiencia de utilización de recursos, promoviendo así la producción de pasto de alta calidad. Para testar la hipótesis, realizamos un experimento de exclusión del pastoreo en un pastizal de la montaña atlántica, combinado con un marco teórico de respuesta-efecto basado en varios atributos vegetales y una metodología estadística apropiada para medir la contribución relativa del recambio de especies y la variabilidad intraespecífica de los atributos (ITV) tras el abandono del pastoreo. Nuestros resultados mostraron que la calidad del pasto disminuyó tras el abandono del pastoreo a corto plazo, principalmente debido al efecto de la ITV. Los efectos por recambio de especies podrían aparecer tras un período más largo de abandono si, tal y como es esperable, las gramíneas altas con tejidos de baja calidad nutritiva sustituyen a las especies de mayor calidad.

Informació de finançament

The authors would like to thank Nuria Vitores (post-graduate student of UPV/EHU), Jon Miranda (postdoc researcher of UPV/EHU) and Joxe Antonio Irastortza (guard of the Aralar Natural Park) for their technical assistance. This study was funded by the Basque Government (IT1022-15), the Ministry of Economy and Competitiveness of Spanish Government (ref: AGL2013-48361-C2-1-R), and an FPI-EHU grant provided to I.O.

Finançadors

Referències bibliogràfiques

  • Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. & Lavorel, S., 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98: 604–613.
  • Aldezabal, A., Moragues, L., Odriozola, I. & Mijangos, I., 2015. Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Applied Soil Ecology, 96: 251–260.
  • AOAC, 1990. Official Method of Analysis of the Association of Official Analytical Chemists. 15th Edition, AOAC International Publisher, Washington DC.
  • Batalla, I. 2015. Opportunities and challenges of sheep milk system towards sustainability. PhD Thesis, UPV/EHU, Bilbo.
  • Cingolani, A.M., Posse, G. & Collantes, M.B., 2005. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. Journal of Applied Ecology, 42(1): 50–59.
  • Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G. & Poorter, H., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4): 335–380.
  • Cruz, P., De Quadros, F.L.F., Theau, J.P., Frizzo, A., Jouany, C., Duru, M. & Carvalho, P.C.F., 2010. Leaf Traits as Functional Descriptors of the Intensity of Continuous Grazing in Native Grasslands in the South of Brazil. Rangeland Ecology & Management, 63(3): 350–358.
  • Deléglise, C., Meisser, M., Mosimann, E., Spiegelberger, T., Signarbieux, C., Jeangros, B. & Buttler, A., 2015. Droughtinduced shifts in plants traits, yields and nutritive value under realistic grazing and mowing managements in a mountain grassland. Agriculture, Ecosystems and Environment, 213: 94–104.
  • Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S., Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D. & Gorné, L.D., 2016. The global spectrum of plant form and function. Nature, 529 (7585): 167–171.
  • Díaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F., Milchunas, D.G., Skarpe, C., Rusch, G., Sternberg, M., Noy-Meir, I., Landsberg, J., Zhang, W., Clark, H. & Campbell, B.D., 2007. Plant trait responses to grazing – a global synthesis. Global Change Biology, 13(2): 313–341.
  • Díaz, S., Noy-Meir, I. & Cabido, M., 2001. Can grazing response of herbaceous plants be predicted from simple vegetative traits?. Journal of Applied Ecology, 38(3): 497–508.
  • European Commission, D.E. 2013. Interpretation manual of European Union habitats. EUR 28. DG-ENV, Luxenburg, LU.
  • Evju, M., Austrheim, G., Halvorsen, R. & Mysterud, A., 2009. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia, 161(1): 77–85.
  • Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dole?al, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Leps, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quested, H., Quétier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, J.-P., Thébault, A., Vile, D. & Zarovali, M.P., 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99(5): 967–85.
  • Garnier, E., Ortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C. & Toussaint, J.-P., 2004. Plant functional markers capture ecosystem properties during secondary succesion. Ecology, 85(9): 2630–2637.
  • Gibbons, W., Moreno, M.T., 2002. The geology of Spain. The Geological Society, London, UK.
  • Grime, J.P., 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86(6): 902–910.
  • Herrero, M., Havlik, P., Valin, H., Notenbaert, A., Rufino, M.C., Thornton, P.K., Blummel, M., Weiss, F., Grace, D. & Obersteiner, M., 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences, 110(52): 20888–20893.
  • Herrero, M., Wirsenius, S., Henderson, B., Rigolot, C., Thornton, P., Havlík, P., de Boer, I. & Gerber, P.J., 2015. Livestock and the Environment: What Have We Learned in the Past Decade?. Annual Review of Environment and Resources,, 40(1): 177–202.
  • Lavorel, S. & Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16(5): 545–556.
  • Lee, M.A., Davis, A.P., Chagunda, M.G.G. & Manning, P., 2017. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences, 14(6): 1403–1417.
  • Legendre, P. & Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129: 271–280.
  • Legendre, P. & Legendre, L., 2012. Numerical Ecology, 3rd English Edition, 3rd ed. Elsevier science, Amsterdam.
  • Leps, J., de Bello, F., ?milauer, P. & Dole?al, J., 2011. Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography, 34(5): 856–863.
  • Lezama, F. & Paruelo, J., 2016. Disentangling grazing effects: trampling, defoliation and urine deposition. Applied Vegetation Science, 19(4): 557–566.
  • Loidi, J., 1982. Datos sobre la vegetación de Guipúzcoa (País Vasco). Lazaroa, 4: 1085:1093.
  • McNaughton, S.J., 1984. Grazing lawns: Animals in herds, plant form and coevolution. American Naturalist, 124(6): 863–886.
  • Milchunas, D.G., Sala, O.E. & Lauenroth, W.K., 1988. A generalized model of the effects of grazing by large herbivores on grassland community structure. American Naturalist, 132(1): 87–106.
  • Moreno García, C.A., Schellberg, J., Ewert, F., Brüser, K., Canales- Prati, P., Linstädter, A., Oomen, R.J., Ruppert, J.C. & Perelman, S.B., 2014. Response of community-aggregated plant functional traits along grazing gradients: Insights from African semi-arid grasslands. Applied Vegetation Science, 17(3): 470–481.
  • Odriozola, I., García-Baquero, G., Fortin, M.-J., Laskurain, N.A. & Aldezabal, A., 2017. Grazing exclusion unleashes competitive plant responses in Iberian Atlantic mountain grasslands. Applied Vegetation Science, 20(1): 50–61.
  • Odriozola, I., García-Baquero, G., Laskurain, N.A. & Aldezabal, A., 2014. Livestock grazing modifies the effect of environmental factors on soil temperature and water content in a temperate grassland. Geoderma, 235–236: 347–354.
  • Parsons, A.J., Edwards, G.R., Newton, P.C.D., Chapman, D.F., Caradus, J.R., Rasmussen, S. & Rowarth, J.S., 2011. Past lessons and future prospects: Plant breeding for yield and persistence in cool-temperate pastures. Grass and Forage Science, 66(2): 153–172.
  • Patton, B.D., Dong, X., Nyren, P.E. & Nyren, A., 2007. Effects of Grazing Intensity, Precipitation, and Temperature on Forage Production. Rangeland Ecology & Management, 60(6): 656–665.
  • Peco, B., Navarro, E., Carmona, C.P., Medina, N.G. & Marques, M.J., 2017. Effects of grazing abandonment on soil multifunctionality: The role of plant functional traits. Agriculture, Ecosystems & Environment, 249: 215–225.
  • Pontes, L.D.S., Louault, F., Carrère, P., Maire, V., Andueza, D. & Soussana, J.F., 2010. The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency. Annals of Botany, 105(6): 957–965.
  • Pontes, L.D.S., Maire, V., Schellberg, J. & Louault, F., 2015. Grass strategies and grassland community responses to environmental drivers: a review. Agronomy for Sustainable Development, 35(4): 1297–1318.
  • Pontes, L.D.S., Soussana, J.F., Louault, F., Andueza, D. & Carrère, P., 2007. Leaf traits affect the above-ground productivity and quality of pasture grasses. Functional Ecology, 21(5): 844–853.
  • Quétier, F., Thébault, A. & Lavorel, S., 2007. Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs, 77(1): 33–52.
  • Ruiz, R., Díez-Unquera, B., Beltrán de Heredia, I., Mandaluniz, N., Arranz, J., Ugarte, E., 2009. The challenge of sustainability for local breeds and traditional systems: dairy sheep in the Basque Country. Proceedings of the 60th Annual Meeting of the European Association for Animal production, pp. 73. Barcelona.
  • Van Der Meijden, E., Wijn, M. & Verkaar, H.J., 1988. Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos, 51: 355–363.
  • Waghorn, G.C. & Clark, D.A., 2004. Feeding value of pastures for ruminants. New Zealand Veterinary Journal, 52(6): 320–331.
  • Westoby, M., 1999. The LHS strategy scheme in relation to grazing and fire. In: Eldridge, D. & Freudenberger, D. (Eds.), People and Rangelands Building the Future. VI International Rangeland Congress INC, pp. 893–896.
  • Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J., 2002. Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species. Annual Review of Ecology and Systematics, 33(1): 125–159.