Itzulpen automatiko gainbegiratu gabea
- ARTETXE ZURUTUZA, MIKEL
- Gorka Labaka Intxauspe Director
- Eneko Agirre Bengoa Director
Universidade de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea
Fecha de defensa: 29 de xullo de 2020
- Kepa Sarasola Gabiola Presidente
- Pablo Gamallo Otero Secretario/a
- Cristina España Bonet Vogal
Tipo: Tese
Resumo
Modern machine translation relies on strong supervision in the form of parallel corpora. Such arequirement greatly departs from the way in which humans acquire language, and poses a major practicalproblem for low-resource language pairs. In this thesis, we develop a new paradigm that removes thedependency on parallel data altogether, relying on nothing but monolingual corpora to train unsupervisedmachine translation systems. For that purpose, our approach first aligns separately trained wordrepresentations in different languages based on their structural similarity, and uses them to initializeeither a neural or a statistical machine translation system, which is further trained through iterative backtranslation.While previous attempts at learning machine translation systems from monolingual corporahad strong limitations, our work¿along with other contemporaneous developments¿is the first to reportpositive results in standard, large-scale settings, establishing the foundations of unsupervised machinetranslation and opening exciting opportunities for future research. // Modern machine translation relies on strong supervision in the form of parallel corpora. Such arequirement greatly departs from the way in which humans acquire language, and poses a major practicalproblem for low-resource language pairs. In this thesis, we develop a new paradigm that removes thedependency on parallel data altogether, relying on nothing but monolingual corpora to train unsupervisedmachine translation systems. For that purpose, our approach first aligns separately trained wordrepresentations in different languages based on their structural similarity, and uses them to initializeeither a neural or a statistical machine translation system, which is further trained through iterative backtranslation.While previous attempts at learning machine translation systems from monolingual corporahad strong limitations, our work¿along with other contemporaneous developments¿is the first to reportpositive results in standard, large-scale settings, establishing the foundations of unsupervised machinetranslation and opening exciting opportunities for future research.