Arquitectura de Automatización basada en Sistemas Ciberfísicos para la Fabricación Flexible en la Industria de Petróleo y Gas

  1. García, Marcelo V
  2. Irisarri, Edurne
  3. Pérez, Federico
  4. Estévez, Elisabet
  5. Marcos, Marga
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Any de publicació: 2018

Volum: 15

Número: 2

Pàgines: 156-166

Tipus: Article

DOI: 10.4995/RIAI.2017.8823 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Revista iberoamericana de automática e informática industrial ( RIAI )

Objectius de Desenvolupament Sostenible

Resum

Es evidente que en los próximos años gran parte de las tecnologías recogidas bajo el marco de la denominada Industria 4.0 tendrá un profundo impacto en todas las empresas y entre ellas, en las relacionadas con la explotación y producción de petróleo y gas. La automatización de bajo coste promueve arquitecturas de referencia rentables y nuevos enfoques de desarrollo para aumentar la flexibilidad y la eficiencia de las operaciones de producción en una planta industrial. En este sentido, OPC UA, proporciona acceso local y remoto a la información de planta, facilitando un mecanismo reconocido de integración tanto horizontal como vertical de manera correcta, segura y eficiente. El objetivo principal de este artículo es presentar una arquitectura abierta para la integración vertical basada en sistemas ciber-físicos de producción, configurados bajo la norma IEC 61499 y usando OPC UA, apta para su utilización en la fabricación flexible en la industria de petróleo ygas.

Referències bibliogràfiques

  • 4DIAC, 2017. IEC 61499 Implementation for Distributed. Available at: https://eclipse.org/4diac/
  • Claassen, A., Rohjans, S. & Lehnhoff Member, S., 2011. Application of the OPC UA for the Smart Grid. In 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies. IEEE, pp. 1–8. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6162627.
  • Garcia, M. V. et al., 2014. Building industrial CPS with the IEC 61499 standard on low-cost hardware platforms. Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp.1–4. https://doi.org/10.1109/ETFA.2014.7005272
  • Garcia, M. V. et al., 2015. Developing CPPS within IEC-61499 based on low cost devices. IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, 2015–July, pp.1–4.
  • GmbH, 4DIAC Consortium. PROFACTOR, 2010. Framework for Distributed Industrial Automation and Control (4DIAC). Available at: http://www.fordiac.org.
  • Hazarika, P. et al., 2015. Mobile cloud integration for industrial data interchange. 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015, pp.1118–1122. https://doi.org/10.1109/ICACCI.2015.7275760
  • Hussain, T. & Frey, G., 2004. Developing IEC 61499 compliant distributed systems with network enabled controllers. In IEEE Conference on Robotics, Automation and Mechatronics, 2004. IEEE, pp. 507–512. Available at: http://ieeexplore.ieee.org/document/1438972/.
  • International Electrotechnical Commission, 2014. International Electrotechnical Commission Std. (2005) IEC 61499: Function blocks, Part 1-4. Available at: http://www.iec.ch.
  • Jain, S., Yuan, C. & Ferreira, P., 2002. EMBench: A Rapid Prototyping Environment for Numerical Control Systems. In Dynamic Systems and Control. ASME, pp. 7–13. Available at: http://proceedings.asmedigita lcollection.asme.org/proceeding.aspx?articleid=1580998.
  • Kim, J. et al., 2014. M2M service platforms: Survey, issues, and enabling technologies. IEEE Communications Surveys and Tutorials, 16(1), pp.61–76. https://doi.org/10.1109/SURV.2013.100713.00203
  • van der Linden, D. et al., 2011. An OPC UA interface for an evolvable ISA88 control module. In ETFA2011. IEEE, pp. 1–9. Available at: http://ieeexplore.ieee.org/document/6058978/. https://doi.org/10.1109/ETFA.2011.6058978
  • Olsen, S. et al., 2005. Contingencies-based reconfiguration of distributed factory automation. Robotics and Computer-Integrated Manufacturing, 21(4–5), pp.379–390. https://doi.org/10.1016/j.rcim.2004.11.011
  • Perez, F. et al., 2015. A CPPS Architecture approach for Industry 4.0. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/document/7301606/.
  • Querol, E. et al., 2016. Evaluation of closed loop control applications using different event management strategies under IEC 61499. In 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). IEEE, pp. 1–8. Available at: http://ieeexplore.ieee.org/document/7605263/.
  • Rentschler, M., Trsek, H. & Durkop, L., 2016. OPC UA extension for IP auto-configuration in cyber-physical systems. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE, pp. 26–31. Available at: http://ieeexplore.ieee.org/document/7819128/.
  • Sande, O., Fojcik, M. & Cupek, R., 2010. OPC UA Based Solutions for Integrated Operations. Communications in Computer and Information Science, 79, pp.76–83. https://doi.org/10.1007/978-3-642-13861-4_8
  • Schwab, C., Tangermann, M. & Ferrarini, L., 2005. Web based methodology for engineering and maintenance of distributed control systems: the TORERO approach. In INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005. IEEE, pp. 32–37. Available at: http://ieeexplore.ieee.org/document/1560348/. https://doi.org/10.1109/INDIN.2005.1560348
  • Stambolov, G. & Batchkova, I., 2011. Reconfiguration processes in manufacturing systems on the base of IEC 61499 standard. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems. IEEE, pp. 161–166. Available at: http://ieeexplore.ieee.org/document/6072731/. https://doi.org/10.1109/IDAACS.2011.6072731
  • Stojmenovic, I., 2014. Machine-to-Machine Communications with In-network Data Aggregation, Processing and Actuation for Large Scale Cyber-Physical Systems. IEEE Internet of Things Journal, PP(99), pp.1–1. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=6766661.
  • Strasser, T. et al., 2011. Design and Execution Issues in IEC 61499 Distributed Automation and Control Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1), pp.41–51. Available at: http://ieeexplore.ieee.org/document/5571034/. https://doi.org/10.1109/TSMCC.2010.2067210
  • Strasser, T., Auinger, F. & Zoitl, A., 2004. Development, implementation and use of an IEC 61499 function block library for embedded closed loop control. In 2nd IEEE International Conference on Industrial Informatics, 2004. INDIN '04. 2004. IEEE, pp. 594–599. Available at: http://ieeexplore.ieee.org/document/1417415/. https://doi.org/10.1109/INDIN.2004.1417415
  • Thramboulidis, K. & Tranoris, C., 2001. An architecture for the development of function block oriented engineering support systems. In Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515). IEEE, pp. 536–542. Available at: http://ieeexplore.ieee.org/document/ 1013258/https://doi.org/10.1109/CIRA.2001.1013258
  • Vicaire, P.A. et al., 2012. Bundle : A Group-Based Programming Abstraction for Cyber-Physical Systems. , 8(2), pp.379–392.
  • Vyatkin, V., Cheng Pang & Tripakis, S., 2015. Towards cyber-physical agnosticism by enhancing IEC 61499 with PTIDES model of computations. In IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp. 001970–001975. Available at: http://ieeexplore.ieee.org/document/7392389/.
  • Wang, L. et al., 2001. Realizing Holonic Control with Function Blocks. Integr. Comput.-Aided Eng., 8(1), pp.81–93. Available at: http://dl.acm.org/citation.cfm?id=1275723.1275730.
  • Wang, L., Keshavarzmanesh, S. & Feng, H.Y., 2008. Design of adaptive function blocks for dynamic assembly planning and control. Journal of Manufacturing Systems, 27(1), pp.45–51. Available at: https://doi.org/10.1016/j.jmsy.2008.06.003
  • Wang, L., Song, Y. & Gao, Q., 2009. Designing function blocks for distributed process planning and adaptive control. Engineering Applications of Artificial Intelligence, 22(7), pp.1127–1138. Available at: https://doi.org/10.1016/j.engappai.2008.11.008
  • Yuan, C. & Ferreira, P., 2004. An Integrated Environment for the Design and Control of Deadlock-Free Flexible Manufacturing Cells. In Manufacturing Engineering and Materials Handling Engineering. ASME, pp. 471–481. Available at: http://proceedings. asmedigitalcollection.asme.org/ proceeding.aspx?articleid=1652663.
  • Zawawi, A. El & El-Sayed, A., 2012. Integration of DCS and ESD through an OPC application for upstream Oil and Gas. IEEE Power and Energy Society General Meeting, pp.1–5.
  • Zoitl, A. et al., 2005. Executing real-time constrained control applications modelled in IEC 61499 with respect to dynamic reconfiguration. In INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005. IEEE, pp. 62–67. Available at: http://ieeexplore.ieee.org/document/1560353/. https://doi.org/10.1109/INDIN.2005.1560353