Combined effects of excess boron and salinity on root histology of Zea mays L. amylacea from the Lluta Valley (Arica, Chile)

  1. Elizabeth Bastías
  2. María B González-Moro
  3. Carmen González-Murua
Revue:
Idesia

ISSN: 0073-4675 0718-3429

Année de publication: 2015

Volumen: 33

Número: 2

Pages: 9-20

Type: Article

DOI: 10.4067/S0718-34292015000200002 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

D'autres publications dans: Idesia

Résumé

La estructura celular y las alteraciones en la organización del tejido de raíz se analizaron en Zea mays L. amylacea como consecuencia de altos niveles de boro (B) y de salinidad. Concentraciones de los tratamientos de salinidad fueron 100 mM NaCl (baja salinidad, L) y 430 mM NaCl (alta salinidad, H). El exceso de B se suministró como ácido bórico para obtener 20 (334 µM) y 40 (668 µM) B mg kg-1 en la solución de nutrientes durante 20 días. Nuestros resultados complementan otros estudios sobre el ecotipo amylacea y confirman el alto grado de tolerancia a la salinidad y el exceso de B mostrada por esta variedad. La aplicación de B bajo condiciones sin sal y baja salinidad no dio lugar a cambios en la estructura de las células de la corteza de la raíz ni el cilindro vascular. Bajo condiciones de alta salinidad células de la raíz amylacea mostraron alteraciones leves, como un aumento en el número de filas de células. Estas condiciones de alta salinidad no resultaron en el espesor de la estela.

Références bibliographiques

  • Atkinson, N.J, Urwin, P.E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany. 63. 3523-3543
  • Barrieu, F, Chaumont, F, Chrispeels, M. (1998). High Expression of the Tonoplast Aquaporin ZmTIP1 in Epidermal and Conducting Tissue of Maize. Plant Physiology. 117. 1153-1163
  • Bastías, E, Fernández-García, N, Carvajal, M. (2004). Aquaporin functionality in rotos of Zea mays in relation to the interactive effects of boron and salinity. Plant Biology. 6. 415-421
  • Bastías, E, González-Moro, M.B, González-Murua, C. (2004). Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available. Plant and Soil. 267. 73-84
  • Bastías, E, González-Moro, M.B, González-Murua, C. (2013). Interactive effects of excess boron and salinity on histological and ultrastructure leaves of Zea mays amylacea from Lluta Valley (Arica-Chile). Ciencia e Investigacion Agraria. 40. 589-603
  • Bastías, E, González-Moro, M.B, González-Murua, C. (2013). Leaf micromorphology in Zea mays amylacea from Lluta Valley (Arica-Chile) with excess boron and salinity. Idesia. 31. 75-80
  • Belyavskaya, N, Zhuk, O, Kurilenko, A, Palladina, T. (2004). Morphogenesis of maize primary roots in relation to salinity and methyure effects: Growth and development of plants. Theorical and practical problems. Abstracts of International Scientific Conference. Lithuanian Institute of Horticulture. Babtai.
  • Bosabalidis, A, Kofidis, G. (2002). Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science. 163. 375-379
  • Cachorro, P, Ortiz, A, Cerdá, A. (1994). Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant and Soil. 159. 205-212
  • (2008). Land and Plant Nutrition Management Service.
  • Flaburiari, A, Kristen, U. (1996). The influence of chlorsulfuron and metsulfuron methyl on root growth and on the ultrastructure of root tips of germinating maize seeds. Plant and Soil. 180. 19-28
  • Flowers, T.J, Hajibagheri, M.A, Clipson, N.J.W. (1986). Halophytes. Quarterly Review of Biology. 61. 313-337
  • González-Moro, B, Lacuesta, M, Becerril, J.M, González-Murua, C, Muñoz-Rueda, A. (1997). Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in maize. Journal of Plant Physiology. 150. 388-394
  • Hajibagheri, M.A, Harvey, D.M.R, Flowers, T.J. (1987). Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties. New Phytologist. 105. 367-379
  • Hakim, M.A, Juraimi, A.S, Hanafi, M.M, Ismail, M.R, Selamat, A, Rafii, M.Y, Latif, M.A. (2014). Biochemical and Anatomical Changes and Yield Reduction in Rice (Oryza sativa L.) under Varied Salinity Regimes. BioMed Research International.
  • Hernández, J.A, Almanza, M.S. (2002). Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum. 115. 251-257
  • Huang, J, Redmann, R.E. (1995). Physiological responses of canola and wild mustard to salinity and contrasting Ca supply. Journal of Plant Nutrition. 18. 1931-1949
  • Jeschke, W.D, Wolf., O. (1988). External potassium supply is not required for root growth in saline conditions: experiments with Ricinus communis L. grown in a reciprocal split-root system. Journal of Experimental Botany. 39. 1149-1167
  • Jones, M.M, Turner., N.C. (1980). Osmotic adjustment in expanding and fully expanded leaves of sunflower in response to water deficits. Functional Plant Biology. 7. 181-192
  • Kalaji, M.H, Pietkiewicz., S. (1993). Salinity effects on plant growth and other physiological processes. Acta Physiologiae Plantarum. 15. 89-124
  • Karahara, I, Ikeda, A, Kondo., T. (2004). Development of the Casparian strip in primary roots of maize under salt stress. Planta. 219. 41-47
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press Limited. London.
  • Martínez-Ballesta, M.C, Bastías, E, Zhu, C, Schaffner, A.R, González-Moro, B, González-Murua, C, Carvajal, M. (2008). Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrana H+-ATPase, in relation to water and nutrient uptake. Physiology Plantarum. 132. 479-490
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science. 11. 1-19
  • Nable, R.O, Bañuelos, G.S, Paull, J.G. (1997). Boron Toxicity. Plant and Soil. 193. 181-198
  • Neuman, P.M. (1995). Structure and Function of Root. Kluwer Academic Publisher.
  • Oertli, J.J. (1990). The distribution of normal and toxic amounts of boron in leaves of rough lemon. Agronomy Journal. 52. 530-532
  • Peng, Y.H, Zhu, Y.F, Mao, Y.Q, Wang, S.M, SU, W.A, Tang, Z.CH. (2004). Alkali grass resist salt stress through high [K+] and an endodermis barrier to Na+. Journal of Experimental Botany. 398. 938-949
  • Reinhardt, D.H, Rost, T.L. (1995). Salinity accelerates endodermal development and induces an exodermis in cotton seedling root. Environmental and Experimental Botany. 35. 563-574
  • Samarajeewa, P.K, Barrero, R.A, Umeda-Hara, C, Kawai, M, Uchimiya., H. (1999). Cortical cell death, cell proliferation, macromolecular movements and rTip1 expression pattern in roots of rice (OryzasativaL.) under NaCl stress. Planta. 207. 354-361
  • Schubert, S, Lauchli., A. (1990). Sodium exclusion mechanisms at the root surface of two maize cultivars. Plant and Soil. 123. 205-209
  • Shabala, S, Shabala, L, Van Volkenburg, E. (2003). Effects of calcium on root development and root ion fluxes in salinized barley seedling. Functional Plant Biology. 30. 507-514
  • Shannon, M.C, Grieve, C.M, Francois, L.E. (1994). Plant Environment Interactions. Marcel Dekker. New York.
  • Storey, R, Schachtman, D.P, Thomas, M.R. (2003). Root structure and cellular chloride, sodium and potassium distribution in salinized grapevines. Plant, Cell and Environment. 26. 789-800
  • Strogonov, B.P, Poljakoff-Mayber, A, Mayer, A.M. (1964). Physiological basis of salt tolerance of plants (as affected by various types of salinity).
  • Valenti, S, Melone, L, Orsi, O, Rivero, F. (1992). Anatomical changes in Prosopis cineraria (L.) Druce seedlings growing at different levels of NaCl: salinity. Annals of Botany. 70. 399-404
  • Wahida, A, Javed, I-UL-H, Ali, I, Baig, A, Rasul, E. (1998). Short term incubation of Sorghum caryopsis in sodium chloride levels: changes in pre- and post-germination physiological parameters. Plant Science. 139. 223-232
  • Wang, X.L, Canny, M.J, Mccully, M.E. (1991). The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiologia Plantarum. 82. 157-162
  • Zimmermann, H.M, Hartmann, K, Schreiber, L, Steudle, E. (2000). Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of maize roots (Zea mays L.). Planta. 210. 302-311
  • Zorb, C, Noll, A, Karl, S, Leib, K, Yan, F, Schubert., S. (2005). Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. Journal of Plant Physiology. 162. 55-66