Bayesian joint modelling of the mean and covariance structures for normal longitudinal data
- Cepeda Cuervo, Edilberto
- Núñez Antón, Vicente A.
ISSN: 1696-2281
Ano de publicación: 2007
Volume: 31
Número: 2
Páxinas: 181-199
Tipo: Artigo
Outras publicacións en: Sort: Statistics and Operations Research Transactions
Resumo
We consider the joint modelling of the mean and covariance structures for the general antedependence model, estimating their parameters and the innovation variances in a longitudinal data context. We propose a new and computationally efficient classic estimation method based on the Fisher scoring algorithm to obtain the maximum likelihood estimates of the parameters. In addition, we also propose a new and innovative Bayesian methodology based on the Gibbs sampling, properly adapted for longitudinal data analysis, a methodology that considers linear mean structures and unrestricted covariance structures for normal longitudinal data. We illustrate the proposed methodology and study its strengths and weaknesses by analyzing two examples, the race and the cattle data sets.
Referencias bibliográficas
- Cepeda, E.C. (2001). Variability Modeling in Generalized Linear Models. Unpublished Ph.D. Thesis. Mathematics Institute, Universidade Federal do Rio de Janeiro.
- Cepeda, E.C. and Gamerman, D. (2000). Bayesian modeling of variance heterogeneity in normal regression models. Brazilian Journal of Probability and Statistics (REBRAPE), 14, 207-221.
- Cepeda, E.C. and Gamerman, D. (2004). Bayesian modeling of joint regressions for the mean and covariance matrix. Biometrical Journal, 4, 430-440.
- Daniels, M.J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553-566.
- Diggle, P.J. and Verbyla, A. (1998). Nonparametric estimation of covariance structure in longitudinal data. Biometrics, 54, 401-415.
- Diggle, P.J., Liang, K.-Y. and Zeger, S.L. (1994). Analysis of Longitudinal Data. Oxford: Oxford University Press.
- Gabriel, K.R. (1962). Ante-dependence analysis of an ordered set of variables. Annals of Mathematical Statistics, 33, 201-212.
- Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
- Kenward, M.C. (1987). A method for comparing profiles of repeated measurements. Applied Statistics, 36, 296-308.
- Laird, N.M. and Ware, J.H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963-974.
- Macchiavelli, R.E. and Arnold, S.F. (1994). Variable order antedependence models. Communications in Statistics. Theory and Methods, 23, 2683-2699.
- Macchiavelli, R.E. and Moser, E.B. (1997). Analysis of repeated mesurements with ante-dependence covariance models. Biometrical Journal, 39, 339-350.
- NuÌnÌez-AntoÌn, V. and Zimmerman, D.L. (2000). Modelling nonstationary longitudinal data. Biometrics, 56, 699-705.
- Pan, J.X. and MacKenzie, G. (2003). On modelling mean-covariance structures in longitudinal studies.Biometrika, 90, 239-244.
- Pan, J.X. and MacKenzie, G. (2006). Regression models for covariance structures in longitudinal studies. Statistical Modelling, 6, 43-57.
- Pan, J.X. and MacKenzie, G. (2007). Modelling conditional covariance in the linear mixed model. Statistical Modelling, 7, 49-71.
- Pan, J.X. and Ye, H. (2006). Modelling covariance structures in generalized estimating equations for longitudinal data. Biometrika, 93, 927-941.
- Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika, 86, 667-690.
- Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika, 87, 425-435.
- Pourahmadi, M. (2002). Graphical diagnostics for modeling unstructured covariance matrices. International Statistical Review, 70, 395-417.
- Pourahmadi, M. and Daniels, M.J. (2002). Dynamic conditionally linear mixed models for longitudinal data. Biometrics, 58, 225-231.
- Stein, M.L. (1999). Interpolation of Spatial Data. Some Theory for Kriging. New York: Springer.
- Wu, W.B. and Pourahmadi, M. (2003). Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika, 90, 831-844.
- Zimmerman, D.L. (2000). Viewing the correlation structure of longitudinal data through a PRISM. The American Statistician, 54, 310-318.
- Zimmerman, D.L. and NuÌnÌez-AntoÌn, V. (1997). Structured antedependence models for longitudinal data. In Modelling Longitudinal and Spatially Correlated Data. Methods, Applications, and Future Directions, T.G. Gregoire, D.R. Brillinger, P.J. Diggle, E. Russek-Cohen, W.G. Warren, and R. Wolfinger (eds.), 63-76. Lecture Notes in Statistics No. 122. New York: Springer-Verlag.
- Zimmerman, D.L. and NuÌnÌez-AntoÌn, V. (2001). Parametric modelling of growth curve data: An overview (with comments). Test, 10, 1-73.
- Zimmerman, D.L., NuÌnÌez-AntoÌn, V. and El Barmi, H. (1998). Computational aspects of likelihood-based estimation of first-order antedependence models. Journal of Statistical Computation and Simulation, 60, 67-84.