Goal-oriented adaptivity using unconventional error representations

  1. DARRIGRAND, VINCENT
Dirixida por:
  1. David Pardo Zubiaur Director
  2. Hélène Barucq Director

Universidade de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 01 de setembro de 2017

Tribunal:
  1. Kristoffer van der Zee Presidente/a
  2. Virginia Muto Foresi Secretario/a
  3. Julien DIAZ Vogal

Tipo: Tese

Teseo: 143767 DIALNET lock_openADDI editor

Resumo

In Goal-Oriented Adaptivity (GOA), the error in the Quantity of Interest (QoI) is represented using theerror functions of the direct and adjoint problems. This error representation is subsequently boundedabove by element-wise error indicators that are used to drive optimal refinements. In this work, wepropose to replace, in the error representation, the adjoint problem by an alternative operator. The mainadvantage of the proposed approach is that, when judiciously selecting such alternative operator, thecorresponding upper bound of the error representation becomes sharper, leading to a more efficientGOA.While the method can be applied to a variety of problems, we focused on one-, two- and threedimensionalHelmholtz and one- and two-dimensional convection-dominated diffusion problems. Weshow via extensive numerical experimentation that the upper bounds provided by the alternative errorrepresentations are sharper than the classical ones and lead to a more robust p-adaptive process. Weprovide guidelines for finding operators delivering sharp error representation upper bounds. We furtherextend the results to problems with discontinuous material coefficients. Finally, we consider a sonicLogging-While-Drilling (LWD) problem to illustrate the applicability of the proposed method.