Design, analysis and implementation of a versatile low level radio frequency system for accelerating cavities

  1. Hassan Zadegan, Hooman
unter der Leitung von:
  1. Víctor Etxebarria Ecenarro Doktorvater

Universität der Verteidigung: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 03 von Oktober von 2011

Gericht:
  1. José Manuel Tarela Pereiro Präsident/in
  2. Juan María Collantes Metola Sekretär
  3. Tomás Junquera Mari Vocal
  4. José Basilio Galván Vocal
  5. Bruno Miguel Soares Gonçalves Vocal

Art: Dissertation

Teseo: 315888 DIALNET lock_openADDI editor

Zusammenfassung

En esta tesis se describen diversas soluciones analógicas y digitales para realizar sistemas de control LLRF (Radio Frecuencia de Bajo Nivel) para cavidades resonantes de radiofrecuencia de aceleradores de partículas. Para analizar dichas cavidades, se desarrolla un modelo genérico que representa la respuesta dinámica de la cavidad bajo la influencia del haz de partículas. Después, se usa este modelo para desarrollar y analizar un sistema analógico de LLRF para el booster' del sincrotrón ALBA, así como un sistema LLRF digital para el linac de la futura Fuente Europea de Protones y Neutrones de Bilbao (ESS-Bilbao). A continuación, se presentan los detalles del diseño e implementación de los dos sistemas LLRF aludidos, así como los resultados experimentales obtenidos en distintas cavidades de radiofrecuencia, así verificando la validez de los dos diseños propuestos. También, se presenta el diseño básico de la electrónica de RF de un sistema de Monitorización de la Posición del Haz de Partículas (BPM) y los resultados preliminares obtenidos con un haz simulado en un banco de ensayos desarrollado al efecto. Hay dos consideraciones importantes a la hora de desarrollar un modelo eléctrico de cavidades radiofrecuencia útil para analizar el sistema o diseñar un lazo de LLRF: la respuesta transitoria y los desajustes de impedancia. Sin embargo, en la literatura raramente se consideran estas cuestiones de manera conjunta, y una suele prevalecer sobre la otra, dependiendo de si la cavidad de radiofrecuencia se mira desde una perspectiva de alta potencia o de LLRF. En esta tesis, en primer lugar, se desarrolla un modelo para representar los aspectos más importantes de la cavidad, incluyendo desajustes de impedancia, potencia reflejada y la respuesta transitoria, por ejemplo en el arranque del sistema o en los instantes de llegada del haz de partículas que carga la cavidad. Como un caso especial, se aplica el modelo a las cavidades RF del anillo de almacenamiento (storage ring) de ALBA, estudiando así los efectos de carga del haz (beam loading), el arranque del sistema y los retardos en la respuesta de los lazos de regulación. Para simular estos lazos, se emplea una técnica matemática para hacer corresponder la frecuencia resonante de la cavidad a banda base, obteniendo de esta manera un modelo equivalente en banda base de la cavidad, con una respuesta aproximadamente igual al modelo convencional RF, pero con una velocidad de simulación mucho mayor. A continuación, se presenta el diseño y la implementación del sistema de LLRF analógico del booster' de ALBA, basado en lazos de realimentación de las señales IQ del sistema. Se miden los parámetros importantes del LLRF operando la cavidad tanto a baja como a alta potencia de RF, verificando así el diseño propuesto. Finalmente, se presenta el diseño, implementación y diversos resultados experimentales del sistema LLRF digital pulsado que hemos desarrollado para el Cuadrupolo de Radio Frecuencia (RFQ) del Rutherford Appleton Laboratory - Front End Test Stand (Oxfordshire, Inglaterra) y para el futuro linac de ESS-Bilbao. En lugar de emplear un front-end' analógico estándar que convierta las señales medidas en la cavidad a una Frecuencia Intermedia (IF) para a continuación submuestrear este señal, en este diseño usamos un demodulador IQ analógico, que transforma directamente las señales RF medidas en sus componentes En-fase (I) y Cuadratura (Q) en banda base. La ventaja principal de usar este método es eliminar la necesidad para un sistema preciso y complejo de sincronización y timing', lo cual da lugar a un sistema LLRF simple y versátil que puede servir para un rango grande de frecuencias y virtualmente para cualquier aplicación LLRF, sean pulsadas, en rampa o de onda continua (CW). Los errores asociados al uso de demoduladores de IQ analógicos han sido identificados y corregidos mediante algoritmos implementados en la FPGA y por medio del ajuste apropiado de los parámetros del lazo de control. Además, se ha desarrollado un modelo equivalente en banda base del RFQ en MATLAB-Simulink para estudiar su respuesta transitoria en condiciones de carga del haz y en presencia de errores de fase y retardos. Los resultados experimentales obtenidos con una cavidad de prueba y un modelo en cobre del RFQ verifican que en lazo cerrado pueden obtenerse campos acelerantes con niveles de estabilidad de amplitud y fase superiores al 1 por ciento y un grado respectivamente, además de un margen de fase mayor de +/- 50 grados que confiere robustez al sistema, conservando al mismo tiempo la linealidad y el ancho de banda de los lazos de regulación, y cumpliendo por tanto sobradamente las especificaciones requeridas para el acelerador.