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3261. [2007 : 299, 301℄ Proposed by Ovidiu Furdui, University of Toledo,Toledo, OH, USA.The Fibonai numbers Fn and Luas numbers Ln are de�ned by thefollowing reurrenes:

F0 = 0 , F1 = 1 , and Fn+1 = Fn + Fn−1 , for n ≥ 1;
L0 = 2 , L1 = 1 , and Ln+1 = Ln + Ln−1 , for n ≥ 1.Prove that
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).Solution byManuel Benito, �Osar Ciaurri, Emilio Fern�andez, and Luz Ronal,Logro ~no, Spain; and Chip Curtis, Missouri Southern State University, Joplin,MO, USA.The following relations between the Fibonai and Luas numbers
L2n + L2n+2 = 5F2n+1 and L2nL2n+2 − 1 = 5F 2
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Applying the inequality xy ≤ 1
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(x + y)2, we obtain
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therefore,
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Using the relation F2n+2 − F2n = F2n+1 and the well known and easyto hek formula F2nF2n+2 + 1 = F 2

2n+1, we have
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.Thus, the sum of the given series does not exeed π

16
≈ 0.196, whih im-proves the proposed upper bound, beause
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≈ 0.625 .Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruk, Austria; and theproposer.Janous also improved the proposed upper bound.

3262. [2007 : 299, 301℄ Proposed by Ovidiu Furdui, University of Toledo,Toledo, OH, USA.Let m be an integer, m ≥ 2, and let a1, a2, . . . , am be positive realnumbers. Evaluate the limit
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