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ABSTRACT. We study the boundedness of the multiplier of the interval [—1,1]
for the Dunkl transform of order o > —1 on weighted LP spaces, with 1 < p <
oco. In particular, we get that it is bounded from LP(R,|z|2®t! dx) into itself
if and only if 4(a+1)/(2a+3) < p < 4(a+1)/(2cc + 1) when o > —1/2 or if
and only if 1 < p < co when —1 < a < —1/2.

1. INTRODUCTION AND MAIN RESULT

For a > —1, let J, denote the Bessel function of order «:

T\ (D)™ (/2)*"
Jalz) = (5) Z n!T(a+n+1)

n=0

Jao (2)

2

(a classical reference on Bessel functions is [1]). Throughout this paper, by
we denote the even function

1 (D2
20 = nlT(a+n+1)

zeC.

In this way, for complex values of the variable z, let

12 e z 2n
n=0 "

(the function Z,, is a small variation of the so-called modified Bessel function of the
first kind and order «, usually denoted by I,,). Moreover, let us take

Eo(z) =Za(2) + ] Tot1(2), z€C.

z
2(a+1

The Dunkl operators on R™ are differential-difference operators associated with
some finite reflection groups (see [2]). We consider the Dunkl operator A,, o >
—1/2, associated with the reflection group Zs on R given by

(1.1) Aof(z) = %f(x) n 201; 1 (f(x) —2f(—x)> .
For a > —1/2 and \ € C, the initial value problem
Aof(z) = Af(x), x€R,
1.2
42 {f(o) =1

has E,(Az) as its unique solution (see [3] and [4]); this function is called the Dunkl
kernel. For oo = —1/2, it is clear that A_; ), = d/dx, and E_; )5(Ax) = e,
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In a similar way to the Fourier transform (which is the particular case a = —1/2),
the Dunkl transform of order & > —1/2 on the real line is

(1.3 Faf )= [ Bulcionf(e) dpa(o). v
were dy, denotes the measure
dpa(t) = e le*t! de.

The study of the properties of the Dunkl transform has a great interest, and many
papers about this subject have been published during the last years. See, for
instance, [5-14] and the references therein.

The behaviour of the Bessel functions is very well known. For instance, for real
values of the variable, they verify the asymptotics

xa

1.4 = at2 +;

(1.4) Jo(T) 3 T(a+ 1) + O(z*7%), x— 07
and

2\ /2 ar

(1.5) Jo(z) = (m) {cos (;v —5 = Z) + O(x_l)} , T — +o0.

From these and similar results, and noticing that
: o Jo(T) | sa Jati(z)

(1.6) E,(iz) =2°T(a+1) 0;7 +2°T(a+1) % xi,

it is easy to check that |E, (ix)| < 1 for every z € R. Then, (1.3) is well defined for
every f € LY(R, du,), and

(1.7) [Fafllooa < Ifll1,as

where we use || - [|,o as a shorthand for || - || Ls(®,dp.)-
Just as the Fourier transform, F, is an isomorphism of the Schwartz class S into
itself, and F2 f(x) = f(—x). Fubini’s theorem implies the multiplication formula

/ammmm@z/amwmmm,Mes
R R

Taking g(z) = Fof(x) we get || Fafll2,a = |Ifll2,a, f € S. By density, this can be
extended to functions in L?(R, du,).
Via S, the [—1, 1]-multiplier M,, is defined as

(1.8) Mo f(z) = Falxi-1,9Faf)(—2)
or, equivalently,

FaMaf)(x) = x-1,1(2) Faf (@),
which is the usual notation.

In the paper [15], the authors studied the boundedness of the operator M, for
a > —1/2 in weighted LP spaces.

But the Dunkl transform F, can also be defined in L*(R,du,) for @ > —1, al-
though some properties like (1.7) are no longer valid for —1 < a < —1/2. However,
it preserves the same properties in L?(R, dj,); see [16] for details. The aim of this
paper is to extend the case & > —1/2 in [15] to the whole range a > —1.

Thus, the main result of this paper is the following;:

Theorem. Let @ > —1, 1 < p < 0o, and w,p(x) = |2|*(1 + |2])°~%. Then, there
exists a constant C' such that

(1.9) Hwa,bMapr,a < CHwa,bep,oc
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if and only if

2 2 1
(1.10) EE < (204 2) (1—p>
and
20+1 20+ 2 20+ 1 1
1.11 — b< — 2 D (1—--.
(1.11) 5 . <b< 5 +(a+)( p)

As a simple consequence, it is easy to check that, in the unweighted case a =
b =0, we have

Hatl) 4ot
IMaflpa <Cllflpa <= { 2a+3 P 2a+1"
1<p<oo, if—l<a<-1/2.

if o >—1/2,

In Figure 1 we show the region of boundedness of the multiplier M, for a > —1
and 1 < p < oo; there, the filled region consists of the values («,1/p) such that
My, is bounded from LP(R, du, ) into itself.

1/p

fea.

WPR- = ——c——====cccccc====cs-co=c=——=ooood

et

FIGURE 1. Region of boundedness of M,,.

Although the theorem presented in this paper is very similar to the theorem
n [15], the proof is not the same. It is interesting to explain the difference.

The usual procedure in harmonic analysis to study the boundedness of an op-
erator on LP spaces is to write it as an integral operator with a kernel and then
analyse such kernel. For our multiplier M,,, by using (1.8) and (1.3), we have

1

Maf(@) = Fal(x(ora) (1) Faf(r)(—2) = / Eo(irz) Faf (r) dpta(r)

-1

-/ ' B (ira) ([ Eat-iom) 1) o)) diatr)

-1

= /R ( /_ 11 Eo(irz) Eq(—iry) dua(r)) f(y) dpa(y),

where in the last step we have used Fubini’s theorem (which is justified for suitable
functions and extended in the usual way). Then, M, can be written as

(1.12) Mo f(z) = / Ko (. 9) £ () dpta(y)

with kernel

(1.13) Kolz,y) = /_1 E(irx)Eq(—iry) dpa(r).
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The next step is to get a good expression for the kernel. In [15] we see that, for
z,y € R, x # y, one has
(1.14

)
/_ 1 Eo(izr) Eq(—iyr) dpa(r) 1 Eo(ix) Ea(—iy) — Ba(—ix) Ea(iy)

T 20T (a4 1) i(z —y)

(this expression has been useful not only in [15], but also in [6] in connection with
a sampling theorem related to the Dunkl transform).
Then, the operator M, can be written as

(115) Maf(z) = / Ko, y) £ () dpia(y)
o / B, (i) Ea(~ i)
201 a4+ 1) Jr i(x —y)

1 E,(—ix)Eq(iy)
( 1)/]1_\g @) f(y) dpa(y)

201 (o +
Taf(x) = T2f(x)),

f(y) dpa(y)

B 1

= e 12 |
with

T2 (@) = Ealia)H((Ea(=iy) /) f(3)ly ") (@),

T2 (@) = Ea(—io)H ((Ealiy) /) (1) ly ) @),

where H denotes the Hilbert transform.

In [15], the process continues by proving the LP-boundedness of the operators
7.1 and T2 by means of the A, theory of weights, what holds for « > —1/2 in the
corresponding range of p’s.

But this method is not longer valid for the case —1 < o < —1/2 because, if we try
to follow it, we find that neither 7! nor 7.2 are bounded operators in the requires L?
spaces. Therefore, such decomposition is not useful in the range —1 < oo < —1/2.

Thus, in this paper we will use a different decomposition of the kernel, that will
lead to another decomposition of M, as the sum of two operators. Then, we will
make a clever use of the A, theory of weights to prove the LP-boundedness of these
new operators. Note that the decomposition shown in this paper works both for
the cases @ > —1/2 and —1 < o < —1/2, so the present proof also covers the result
previously stated in [15].

2. PROOF OF THE THEOREM

The method to prove that the conditions (1.10) and (1.11) are necessary for (1.9)
is as in [15]; here, we will not repeat it. Then, let us see that, provided o« > —1
and 1 < p < oo, the conditions (1.10) and (1.11) are sufficient for (1.9).

Given p € (1,00), a weight w in R is said to belong to the A, class if

(frs) (foeo-va)” s

for every interval I C R, with C independent of . An important application of A,
theory lies on its relation with the boundedness of the Hilbert transform

g\y
Hg(z) = / () dy.
RT—Y
Indeed, in [17] (see also [18] for further information) it is proved that
H: LP(R,w) = LP(R,w) bounded <= w € A,.
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For radial weights, it is well known that
lzf e A, <= —-1<B<p-1
If we take ®(x) = |z|” for x € [-1,1] and ®(z) = |z|® for z € (—o0,1) U (1,00),
(2.1) PcAd, < —-1I<r<p—land —1<s<p-—1
(the intuitive behaviour is clear; see [19] for details and a proof).

In what follows, we will use C' (perhaps with subindex) to denote a positive
constant independent of = or f (and all other variables), which can assume different
values in different occurrences. Moreover, for non-negative functions v and v defined
on an interval, u(z) ~ v(z) means that there exist two positive constants Cy and
Cy such that Cy < u(x)/v(z) < Cs.

As explained in the introduction, we are going to find a decomposition of M, f

different to (1.15). To do this, we will manipulate the right hand side in (1.14). By
substituting (1.6), we obtain

E,(ix)E,(—iy) — Eq(—iz)E,(iy)

Jox1(x) . Jay)  Ja(®) Jat1(y) .
_ 92a+1 2 +1 +
=2 F(CV + 1) < xa—i—l (22 ya - T ya-‘rl vy

and then the kernel can be expressed, for x # y, as

Jati1(z) T Ja(y)  Ja(x) Jat1(y)
potl yo zo yoti Y

r—y
Now, to write My f in terms of Hilbert transforms to apply the A, theory of
weights, let us use (1.12), (1.13) and (2.2). In this way, we get

(23)  Maf(z) = / Ko (2, 9) f(4) djia(y)

(2.2) /_1 E,(izr)Eq(—tyr) dua(r) = 2°T (a + 1)

Ja+1($) T .

— 2°T(a + 1)/ YV f(y) dpal(y)

R r—=y

= Uy f(x) = U f(),
with

usfe) = o U (2 e ) o),

2 rto) = 22 11 (3 220 ) o),

With this decomposition, (1.9) follows if we prove that there exists a constant
C independent of f € LP(R, wq, p(z)P|z|?**! dz) such that

U2 (2)wa b ()| Lr (2201 dey < Clf (@)wa (@)l Lo jozott day,  J=1,2.
Taking g(y) = (Ja(y)/y*)f(y)|y|?>**?!, the inequality corresponding to j = 1 is
equivalent to

(2.4) IHG(@) | o (R |2 J0cs1 (@) /2041 [P,y (2)7 0|20+ da)
. < C||g(x)||LP(R,|J,1(w)/a:“|*P|w\—(2“+1)Pwa,b(a:)1’|a:|2“+1 dx)s

similarly, the corresponding to j = 2 is equivalent to

(2.5) I g (@) | Lo (B 17 () f2 [P0 1 (2)7 ]~ ot a2+ dr)
' < C”g(l‘) ||LP(R,|xJa+1(w)/w"’+1|_T’\w\_(2"+1)Pwa,b(m)f’|x|2“‘+1 dx)-
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Let us start with (2.4). It is enough to prove that there is a weight ® € A, with

Jo P Ja P
Lot ) a2t < @) < O | P2 oot a2t

e

Cl ‘x

Remember that we are here using the even functions Ji, (z)/2% and Ju41(z)/x*
defined on the whole real line, so we can write this condition as

O a1 (|2])P|2| = Pwap ()P |22+

< ®(x) < ColJa(ll)| P la| =TV Pwq b (2)P |22

(2.6)

We have w, p(x) ~ |z|* in [~1,1] and w,p(x) ~ |z/° in (—oo0,—1] U [1,00).
Moreover, from the estimates (1.4) and (1.5) it is clear that, for o > —1,
Colz|®, if x € [-1,1],
Colz|~Y2, if 2 € (—o0, —1] U1, 00),

[Ja(l2])] < {

with a C,, constant depending only on «. According to these bounds, we have

Cla|prapt2atd, if [z[ € (0,1),

J z))|P|z| " Pwg p ()P |22 <
| Ot+1(| |)| | | aab( ) | | — C|I‘7p/27ap+bp+2a+17 if |l’| c (1’00)’

and
C|z|~Retptapt2atl —f 2] € (0,1),

Jo |z 7pm7(a+1)pwa 2)P|z]2o Tt >
[ Ta(la)| 7] @R 2 G prmaptiaatt i ] € (1 o0)

Let us write

||", if [z] € (0,1),
O(z) = —p/2—aptbpt2atl
a0l ] € (1, 00)

By (2.1), ® € A, will hold and fulfil (2.6) if

—2a+1p+tap+2a+1<r<p+ap+2a+l,
(2.7) —-l<r<p-1,
—1l<—-p/2—ap+bp+2a+1<p-1

The third line is equivalent to

2 1 2 2 2 1 1
atl ot <b<—aJr +QR2a+2)(1--],
2 p 2 P

which is the condition (1.11) of the theorem. For the inequalities in (2.7) involving
r, let us first note that —(2a+ 1)p+ap+2a+1 < p+ ap + 2a + 1 is equivalent
to 0 < (2a+ 2)p, and this is true for any « > —1. Then, for the existence of r it is
enough to show that —(2a+ 1)p+ap+2a+1<p—1land -1 <p+ap+2a+1.
Even more, the existence of r will be also guaranteed if we substitute the condition
—1<p+ap+2a+1by —1 < ap+ 2a + 1, that is stronger. Then, it suffices to
note that the inequalities —(2a+ 1)p+ap+2a+1<p—1and -1 <ap+2a+1
are equivalent to

200+ 2

<a< (2a+2) <1—]1)>,

that is the condition (1.10) of the theorem.
The study of (2.5) is completely similar. Instead of (2.7) we get the conditions

—2a+p+ap+2a+1<r<ap+2a+1,
(2.8) -l<r<p-1,
—1<—-p/2—ap+bp+2a+1<p-—1,
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and, now, the inequality —2(a+1)p+ap+2a+1 < ap+2a+1 is true for any o > —1.
With small variations of the arguments used for U} we deduce the boundedness of
U2, and consequently the theorem is proved.

Remark. If we try to follow the method in [15] with the operators 7! and 72 in
the decomposition (1.15), the first lines in (2.7) and (2.8) become, instead, —(2a +
Dp+ap+2a+1<r<p+ap+2a+1 (twice the same condition). But, this time,
the inequality —(2a+ 1)p+ap+2a+1 < ap+2a+ 1 is not true in general for any
a > —1 (only for a > —1/2), so the method fails (actually, it is possible to prove
that neither 7! nor 7.2 are bounded operators in the whole range given by (1.10)
and (1.11) when —1 < o < —1/2, but this is not of interest).
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Economia y Competitividad, Spain) under Grant MTM2012-36732-C03-02.
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