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Abstract. We study the boundedness of the multiplier of the interval [−1, 1]
for the Dunkl transform of order α > −1 on weighted Lp spaces, with 1 < p <

∞. In particular, we get that it is bounded from Lp(R, |x|2α+1 dx) into itself

if and only if 4(α+ 1)/(2α+ 3) < p < 4(α+ 1)/(2α+ 1) when α > −1/2 or if
and only if 1 < p <∞ when −1 < α ≤ −1/2.

1. Introduction and main result

For α > −1, let Jα denote the Bessel function of order α:

Jα(x) =
(x

2

)α ∞∑
n=0

(−1)n(x/2)2n

n! Γ(α+ n+ 1)

(a classical reference on Bessel functions is [1]). Throughout this paper, by Jα(z)
zα

we denote the even function

1

2α

∞∑
n=0

(−1)n(z/2)2n

n! Γ(α+ n+ 1)
, z ∈ C.

In this way, for complex values of the variable z, let

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
= Γ(α+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)

(the function Iα is a small variation of the so-called modified Bessel function of the
first kind and order α, usually denoted by Iα). Moreover, let us take

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z), z ∈ C.

The Dunkl operators on Rn are differential-difference operators associated with
some finite reflection groups (see [2]). We consider the Dunkl operator Λα, α ≥
−1/2, associated with the reflection group Z2 on R given by

(1.1) Λαf(x) =
d

dx
f(x) +

2α+ 1

x

(
f(x)− f(−x)

2

)
.

For α ≥ −1/2 and λ ∈ C, the initial value problem

(1.2)

{
Λαf(x) = λf(x), x ∈ R,
f(0) = 1

has Eα(λx) as its unique solution (see [3] and [4]); this function is called the Dunkl
kernel. For α = −1/2, it is clear that Λ−1/2 = d/dx, and E−1/2(λx) = eλx.
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In a similar way to the Fourier transform (which is the particular case α = −1/2),
the Dunkl transform of order α ≥ −1/2 on the real line is

(1.3) Fαf(y) =

∫
R
Eα(−ixy)f(x) dµα(x), y ∈ R,

were dµα denotes the measure

dµα(x) = 1
2α+1Γ(α+1) |x|

2α+1 dx.

The study of the properties of the Dunkl transform has a great interest, and many
papers about this subject have been published during the last years. See, for
instance, [5–14] and the references therein.

The behaviour of the Bessel functions is very well known. For instance, for real
values of the variable, they verify the asymptotics

(1.4) Jα(x) =
xα

2αΓ(α+ 1)
+O(xα+2), x→ 0+;

and

(1.5) Jα(x) =

(
2

πx

)1/2 [
cos
(
x− απ

2
− π

4

)
+O(x−1)

]
, x→ +∞.

From these and similar results, and noticing that

(1.6) Eα(ix) = 2αΓ(α+ 1)
Jα(x)

xα
+ 2αΓ(α+ 1)

Jα+1(x)

xα+1
xi,

it is easy to check that |Eα(ix)| ≤ 1 for every x ∈ R. Then, (1.3) is well defined for
every f ∈ L1(R, dµα), and

(1.7) ‖Fαf‖∞,α ≤ ‖f‖1,α,

where we use ‖ · ‖p,α as a shorthand for ‖ · ‖Lp(R,dµα).
Just as the Fourier transform, Fα is an isomorphism of the Schwartz class S into

itself, and F2
αf(x) = f(−x). Fubini’s theorem implies the multiplication formula∫
R
Fαf(x)g(x) dµα(x) =

∫
R
Fαg(x)f(x) dµα(x), f, g ∈ S.

Taking g(x) = Fαf(x) we get ‖Fαf‖2,α = ‖f‖2,α, f ∈ S. By density, this can be
extended to functions in L2(R, dµα).

Via S, the [−1, 1]-multiplier Mα is defined as

(1.8) Mαf(x) = Fα(χ[−1,1]Fαf)(−x)

or, equivalently,

Fα(Mαf)(x) = χ[−1,1](x)Fαf(x),

which is the usual notation.
In the paper [15], the authors studied the boundedness of the operator Mα for

α ≥ −1/2 in weighted Lp spaces.
But the Dunkl transform Fα can also be defined in L2(R, dµα) for α > −1, al-

though some properties like (1.7) are no longer valid for −1 < α < −1/2. However,
it preserves the same properties in L2(R, dµα); see [16] for details. The aim of this
paper is to extend the case α ≥ −1/2 in [15] to the whole range α > −1.

Thus, the main result of this paper is the following:

Theorem. Let α > −1, 1 < p < ∞, and wa,b(x) = |x|a(1 + |x|)b−a. Then, there
exists a constant C such that

(1.9) ‖wa,bMαf‖p,α ≤ C‖wa,bf‖p,α
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if and only if

(1.10) −2α+ 2

p
< a < (2α+ 2)

(
1− 1

p

)
and

(1.11)
2α+ 1

2
− 2α+ 2

p
< b < −2α+ 1

2
+ (2α+ 2)

(
1− 1

p

)
.

As a simple consequence, it is easy to check that, in the unweighted case a =
b = 0, we have

‖Mαf‖p,α ≤ C‖f‖p,α ⇐⇒


4(α+ 1)

2α+ 3
< p <

4(α+ 1)

2α+ 1
, if α ≥ −1/2,

1 < p <∞, if −1 < α < −1/2.

In Figure 1 we show the region of boundedness of the multiplier Mα for α > −1
and 1 < p < ∞; there, the filled region consists of the values (α, 1/p) such that
Mα is bounded from Lp(R, dµα) into itself.

0 1 2 3 4 5 6
0

1/2

1

− 1
2

α

1/p

Figure 1. Region of boundedness of Mα.

Although the theorem presented in this paper is very similar to the theorem
in [15], the proof is not the same. It is interesting to explain the difference.

The usual procedure in harmonic analysis to study the boundedness of an op-
erator on Lp spaces is to write it as an integral operator with a kernel and then
analyse such kernel. For our multiplier Mα, by using (1.8) and (1.3), we have

Mαf(x) = Fα(χ[−1,1](r)Fαf(r))(−x) =

∫ 1

−1

Eα(irx)Fαf(r) dµα(r)

=

∫ 1

−1

Eα(irx)

(∫
R
Eα(−iyr)f(y) dµα(y)

)
dµα(r)

=

∫
R

(∫ 1

−1

Eα(irx)Eα(−iry) dµα(r)

)
f(y) dµα(y),

where in the last step we have used Fubini’s theorem (which is justified for suitable
functions and extended in the usual way). Then, Mα can be written as

(1.12) Mαf(x) =

∫
R
Kα(x, y)f(y) dµα(y)

with kernel

(1.13) Kα(x, y) =

∫ 1

−1

Eα(irx)Eα(−iry) dµα(r).
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The next step is to get a good expression for the kernel. In [15] we see that, for
x, y ∈ R, x 6= y, one has
(1.14)∫ 1

−1

Eα(ixr)Eα(−iyr) dµα(r) =
1

2α+1Γ(α+ 1)

Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

i(x− y)

(this expression has been useful not only in [15], but also in [6] in connection with
a sampling theorem related to the Dunkl transform).

Then, the operator Mα can be written as

Mαf(x) =

∫
R
Kα(x, y)f(y) dµα(y)(1.15)

=
1

2α+1Γ(α+ 1)

∫
R

Eα(ix)Eα(−iy)

i(x− y)
f(y) dµα(y)

− 1

2α+1Γ(α+ 1)

∫
R

Eα(−ix)Eα(iy)

i(x− y)
f(y) dµα(y)

=
1

22α+2Γ(α+ 1)2

(
T 1
α f(x)− T 2

α f(x)
)
,

with

T 1
α f(x) = Eα(ix)H

(
(Eα(−iy)/i)f(y)|y|2α+1

)
(x),

T 2
α f(x) = Eα(−ix)H

(
(Eα(iy)/i)f(y)|y|2α+1

)
(x),

where H denotes the Hilbert transform.
In [15], the process continues by proving the Lp-boundedness of the operators

T 1
α and T 2

α by means of the Ap theory of weights, what holds for α ≥ −1/2 in the
corresponding range of p’s.

But this method is not longer valid for the case −1 < α < −1/2 because, if we try
to follow it, we find that neither T 1

α nor T 2
α are bounded operators in the requires Lp

spaces. Therefore, such decomposition is not useful in the range −1 < α < −1/2.
Thus, in this paper we will use a different decomposition of the kernel, that will

lead to another decomposition of Mα as the sum of two operators. Then, we will
make a clever use of the Ap theory of weights to prove the Lp-boundedness of these
new operators. Note that the decomposition shown in this paper works both for
the cases α ≥ −1/2 and −1 < α < −1/2, so the present proof also covers the result
previously stated in [15].

2. Proof of the theorem

The method to prove that the conditions (1.10) and (1.11) are necessary for (1.9)
is as in [15]; here, we will not repeat it. Then, let us see that, provided α > −1
and 1 < p <∞, the conditions (1.10) and (1.11) are sufficient for (1.9).

Given p ∈ (1,∞), a weight w in R is said to belong to the Ap class if(∫
I

w(x) dx

)(∫
I

w(x)−1/(p−1) dx

)p−1

≤ C|I|p

for every interval I ⊆ R, with C independent of I. An important application of Ap
theory lies on its relation with the boundedness of the Hilbert transform

Hg(x) =

∫
R

g(y)

x− y
dy.

Indeed, in [17] (see also [18] for further information) it is proved that

H : Lp(R, w)→ Lp(R, w) bounded ⇐⇒ w ∈ Ap.
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For radial weights, it is well known that

|x|β ∈ Ap ⇐⇒ −1 < β < p− 1.

If we take Φ(x) = |x|r for x ∈ [−1, 1] and Φ(x) = |x|s for x ∈ (−∞, 1) ∪ (1,∞),

(2.1) Φ ∈ Ap ⇐⇒ −1 < r < p− 1 and − 1 < s < p− 1

(the intuitive behaviour is clear; see [19] for details and a proof).
In what follows, we will use C (perhaps with subindex) to denote a positive

constant independent of x or f (and all other variables), which can assume different
values in different occurrences. Moreover, for non-negative functions u and v defined
on an interval, u(x) ∼ v(x) means that there exist two positive constants C1 and
C2 such that C1 ≤ u(x)/v(x) ≤ C2.

As explained in the introduction, we are going to find a decomposition of Mαf
different to (1.15). To do this, we will manipulate the right hand side in (1.14). By
substituting (1.6), we obtain

Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

= 22α+1Γ(α+ 1)2

(
Jα+1(x)

xα+1
ix
Jα(y)

yα
− Jα(x)

xα
Jα+1(y)

yα+1
iy

)
and then the kernel can be expressed, for x 6= y, as

(2.2)

∫ 1

−1

Eα(ixr)Eα(−iyr) dµα(r) = 2αΓ(α+ 1)

Jα+1(x)
xα+1 x Jα(y)

yα − Jα(x)
xα

Jα+1(y)
yα+1 y

x− y
.

Now, to write Mαf in terms of Hilbert transforms to apply the Ap theory of
weights, let us use (1.12), (1.13) and (2.2). In this way, we get

Mαf(x) =

∫
R
Kα(x, y)f(y) dµα(y)(2.3)

= 2αΓ(α+ 1)

∫
R

Jα+1(x)
xα+1 x Jα(y)

yα

x− y
f(y) dµα(y)

− 2αΓ(α+ 1)

∫
R

Jα(x)
xα

Jα+1(y)
yα+1 y

x− y
f(y) dµα(y)

= U1
αf(x)− U2

αf(x),

with

U1
αf(x) = x

Jα+1(x)

xα+1
H

(
Jα(y)

yα
f(y)|y|2α+1

)
(x),

U2
αf(x) =

Jα(x)

xα
H

(
y
Jα+1(y)

yα+1
f(y)|y|2α+1

)
(x).

With this decomposition, (1.9) follows if we prove that there exists a constant
C independent of f ∈ Lp(R, wa,b(x)p|x|2α+1 dx) such that

‖U jαf(x)wa,b(x)‖Lp(R,|x|2α+1 dx) ≤ C‖f(x)wa,b(x)‖Lp(R,|x|2α+1 dx), j = 1, 2.

Taking g(y) = (Jα(y)/yα)f(y)|y|2α+1, the inequality corresponding to j = 1 is
equivalent to

(2.4)
‖Hg(x)‖Lp(R,|xJα+1(x)/xα+1|pwa,b(x)p|x|2α+1 dx)

≤ C‖g(x)‖Lp(R,|Jα(x)/xα|−p|x|−(2α+1)pwa,b(x)p|x|2α+1 dx);

similarly, the corresponding to j = 2 is equivalent to

(2.5)
‖Hg(x)‖Lp(R,|Jα(x)/xα|pwa,b(x)p|x|−(2α+1)p|x|2α+1 dx)

≤ C‖g(x)‖Lp(R,|xJα+1(x)/xα+1|−p|x|−(2α+1)pwa,b(x)p|x|2α+1 dx).
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Let us start with (2.4). It is enough to prove that there is a weight Φ ∈ Ap with

C1

∣∣∣∣x Jα+1(x)

xα+1

∣∣∣∣p wa,b(x)p|x|2α+1 ≤ Φ(x) ≤ C2

∣∣∣∣Jα(x)

xα

∣∣∣∣−p |x|−(2α+1)pwa,b(x)p|x|2α+1.

Remember that we are here using the even functions Jα(x)/xα and Jα+1(x)/xα+1

defined on the whole real line, so we can write this condition as

(2.6)
C1|Jα+1(|x|)|p|x|−αpwa,b(x)p|x|2α+1

≤ Φ(x) ≤ C2|Jα(|x|)|−p|x|−(α+1)pwa,b(x)p|x|2α+1.

We have wa,b(x) ∼ |x|a in [−1, 1] and wa,b(x) ∼ |x|b in (−∞,−1] ∪ [1,∞).
Moreover, from the estimates (1.4) and (1.5) it is clear that, for α > −1,

|Jα(|x|)| ≤

{
Cα|x|α, if x ∈ [−1, 1],

Cα|x|−1/2, if x ∈ (−∞,−1] ∪ [1,∞),

with a Cα constant depending only on α. According to these bounds, we have

|Jα+1(|x|)|p|x|−αpwa,b(x)p|x|2α+1 ≤

{
C|x|p+ap+2α+1, if |x| ∈ (0, 1),

C|x|−p/2−αp+bp+2α+1, if |x| ∈ (1,∞),

and

|Jα(|x|)|−p|x|−(α+1)pwa,b(x)p|x|2α+1 ≥

{
C|x|−(2α+1)p+ap+2α+1, if |x| ∈ (0, 1),

C|x|−p/2−αp+bp+2α+1, if |x| ∈ (1,∞).

Let us write

Φ(x) =

{
|x|r, if |x| ∈ (0, 1),

|x|−p/2−αp+bp+2α+1, if |x| ∈ (1,∞).

By (2.1), Φ ∈ Ap will hold and fulfil (2.6) if

(2.7)


−(2α+ 1)p+ ap+ 2α+ 1 ≤ r ≤ p+ ap+ 2α+ 1,

−1 < r < p− 1,

−1 < −p/2− αp+ bp+ 2α+ 1 < p− 1.

The third line is equivalent to

2α+ 1

2
− 2α+ 2

p
< b < −2α+ 1

2
+ (2α+ 2)

(
1− 1

p

)
,

which is the condition (1.11) of the theorem. For the inequalities in (2.7) involving
r, let us first note that −(2α + 1)p + ap + 2α + 1 ≤ p + ap + 2α + 1 is equivalent
to 0 ≤ (2α+ 2)p, and this is true for any α > −1. Then, for the existence of r it is
enough to show that −(2α+ 1)p+ ap+ 2α+ 1 < p− 1 and −1 < p+ ap+ 2α+ 1.
Even more, the existence of r will be also guaranteed if we substitute the condition
−1 < p + ap + 2α + 1 by −1 < ap + 2α + 1, that is stronger. Then, it suffices to
note that the inequalities −(2α+ 1)p+ ap+ 2α+ 1 < p− 1 and −1 < ap+ 2α+ 1
are equivalent to

−2α+ 2

p
< a < (2α+ 2)

(
1− 1

p

)
,

that is the condition (1.10) of the theorem.
The study of (2.5) is completely similar. Instead of (2.7) we get the conditions

(2.8)


−2(α+ 1)p+ ap+ 2α+ 1 ≤ r ≤ ap+ 2α+ 1,

−1 < r < p− 1,

−1 < −p/2− αp+ bp+ 2α+ 1 < p− 1,
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and, now, the inequality −2(α+1)p+ap+2α+1 ≤ ap+2α+1 is true for any α > −1.
With small variations of the arguments used for U1

α we deduce the boundedness of
U2
α, and consequently the theorem is proved.

Remark. If we try to follow the method in [15] with the operators T 1
α and T 2

α in
the decomposition (1.15), the first lines in (2.7) and (2.8) become, instead, −(2α+
1)p+ ap+ 2α+ 1 ≤ r ≤ p+ ap+ 2α+ 1 (twice the same condition). But, this time,
the inequality −(2α+ 1)p+ ap+ 2α+ 1 ≤ ap+ 2α+ 1 is not true in general for any
α > −1 (only for α ≥ −1/2), so the method fails (actually, it is possible to prove
that neither T 1

α nor T 2
α are bounded operators in the whole range given by (1.10)

and (1.11) when −1 < α < −1/2, but this is not of interest).
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Economı́a y Competitividad, Spain) under Grant MTM2012-36732-C03-02.
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