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1. Introduction and main results

The study and understanding of various kinds of weighted and unweighted inequali-
ties for differential operators and the Fourier transform have been a matter of intensive 
research. This interest has been triggered and sustained by the importance of such in-
equalities in applications to problems in analysis, mathematical physics, spectral theory, 
fluid mechanics and stability of matter. Moreover, the sharpness of the constants in-
volved in these inequalities is the key in establishing existence and non-existence results 
for certain non-linear Schrödinger equations.

For instance, the Pitt’s inequality, the Hardy–Littlewood–Sobolev inequality and the 
logarithmic Sobolev inequality are in connection with the measure of uncertainty [6,8,9]. 
The Sobolev, Hardy, or Hardy–Sobolev type inequalities are applied to prove stability 
of relativistic matter (see [21]). They also deliver insight on the geometric structure 
of the space considered, and the knowledge of the best constants also helps to solve 
isoperimetric inequalities or decide the existence of solutions of certain PDE’s, see [11]
for a description of these topics.

A lot of work concerning these inequalities has been developed in the context of the 
Euclidean space and Riemannian manifolds, but not very much has been done in the 
framework of subriemannian geometry, in particular in the Heisenberg group. We refer to
the remarkable work by R.L. Frank and E.H. Lieb [20] where they derive sharp constants 
for the Hardy–Littlewood–Sobolev inequalities on the Heisenberg group. We also refer the 
reader to [3,7,15,22] concerning several kinds of inequalities related to either the Grushin 
operator, or in Carnot–Carathéodory spaces, or on the Heisenberg group. There is a vast 
literature on this topic and our bibliography refers only to a very small fraction of the 
articles dealing with such inequalities and their applications.

In this article we are concerned with Hardy-type inequalities for the conformally 
invariant (or covariant, both nomenclatures seem to be used with the same meaning in 
the literature) fractional powers of the sublaplacian L on the Heisenberg group Hn. Some 
Hardy inequalities are already known for the sublaplacian, see for instance [2,5,22], and 
also the very recent work by P. Ciatti, M. Cowling and F. Ricci [13] (see Remark 1.7
below). However, in [5] and [13] where the fractional powers are treated, the authors 
have not paid attention to the sharpness of the constants.

To begin with, let us recall two inequalities in the case of the Laplacian Δ =
− 
∑n

j=1
∂2

∂x2
j

on Rn. First, the standard Sobolev embedding W s/2,2(Rn) ↪→ L2n/(n−s)(Rn)
for 0 < s < n leads to the optimal inequality

‖f‖2
q ≤ cn,s〈Δs/2f, f〉 (1.1)

with cn,s = ω
−s/n
n

Γ(n−s
2 )

Γ(n+s
2 ) where ωn is the surface measure of the unit sphere Sn in 

Rn+1 and q = (2n)/(n − s). Here and later, the symbol 〈·, ·〉 denotes the inner product 
in the corresponding space. The above inequality is usually referred to as the Hardy–
Littlewood–Sobolev (HLS) inequality for the fractional Laplacian Δs/2 in the literature.



108 L. Roncal, S. Thangavelu / Advances in Mathematics 302 (2016) 106–158
Secondly, a Hardy-type inequality has the shape∫
Rn

|f(x)|2
(1 + |x|2)s dx ≤ bn,s〈Δs/2f, f〉, (1.2)

for certain constant bn,s. It is easy to see that a Hardy-type inequality can be obtained 
from the HLS inequality. Indeed, one observes that in view of Holder’s inequality applied 
to the left hand side of (1.2) with q = (2n)/(n − s), it follows that∫

Rn

|f(x)|2
(1 + |x|2)s dx ≤ as/nn ‖f‖2

q (1.3)

with an =
∫
Rn(1 + |x|2)−n dx. Hence, in view of (1.1) we immediately get the Hardy-type 

inequality with bn,s = a
s/n
n cn,s. In the case of HLS inequality it is known that the 

optimizers are given by dilations and translations of the function (1 + |x|2)−n/q, see 
e.g. [11]. The constant in (1.1) is sharp but not the one in the Hardy inequality (1.3), 
obtained from the HLS.

There is another form of Hardy-type inequality where the function (1 + |x|2)−s is re-
placed by the homogeneous potential |x|−s: for 0 < s < n/2, f ∈ C∞

0 (Rn), this inequality 
reads as ∫

Rn

|f(x)|2
|x|2s dx ≤ Cn,s〈Δsf, f〉 (1.4)

where the sharp constant Cn,s is given by

Cn,s = 4−sΓ(n−2s
4 )2

Γ(n+2s
4 )2

.

Inequality (1.4) is a generalization of the original Hardy’s inequality proved for the 
gradient of f : for n ≥ 3,

(n− 2)2

4

∫
Rn

|f(x)|2
|x|2 dx ≤

∫
Rn

|∇f(x)|2 dx.

The sharp constant Cn,s was found in [6,24,33]. It is also known that the equality is 
not obtained in the class of functions for which both sides of the inequality are finite. 
Later, Frank, Lieb, and R. Seiringer [21] found a different proof of the inequality (1.4)
when 0 < s < min{1, n/2} by using a ground state representation, which enhanced the 
previous results.

In this work we prove analogues of Hardy-type inequalities for fractional powers of 
the sublaplacian L on the Heisenberg group Hn. Instead of considering powers of L we 
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will consider conformally invariant fractional powers Ls, see Subsection 2.3 for defini-
tions, and prove two versions of Hardy inequalities, one with a non-homogeneous and 
another with a homogeneous weight function. From the inequalities for Ls we can deduce 
corresponding inequalities for Ls, as the operators LsL−s are bounded on L2(Hn).

The conformally invariant fractional powers Ls occur naturally in the context of CR 
geometry on the Heisenberg group and also on the sphere S2n+1. We refer the works 
[11,12,20,27] for more information on these operators. They also arise in connection with 
the extension problem on the Heisenberg group as expounded in the recent work of Frank 
et al. [19].

We denote by W s,2(Hn) the Sobolev space consisting of all L2 functions for which 
Ls/2f ∈ L2(Hn). Therefore, W s,2(Hn) is a Sobolev space naturally associated to L. Note 
that an f ∈ L2(Hn) belongs to W s,2(Hn) if and only if Ls/2f belongs to L2(Hn). We 
now state our first inequality for Ls with a non-homogeneous weight function.

Theorem 1.1 (Hardy inequality in the non-homogeneous case). Let 0 < s < n+1
2 and 

δ > 0. Then

(4δ)s
Γ
( 1+n+s

2
)2

Γ
( 1+n−s

2
)2 ∫

Hn

|f(z, w)|2(
(δ + 1

4 |z|2)2 + w2
)s dz dw ≤ 〈Lsf, f〉

for all functions f ∈ W s,2(Hn).

The above inequality is optimal. In fact, the functions u−s,δ defined in (3.1) optimize 
the above inequality as will be checked later.

As in the Euclidean case studied by [21], we can get an expression for the error term 
in the above inequality when 0 < s < 1. Let

Hs[f ] := 〈Lsf, f〉 − Cs,δ

∫
Hn

|f(z, w)|2(
(δ + 1

4 |z|2)2 + w2
)s dz dw

where Cs,δ = (4δ)s Γ(n+1+s
2 )2

Γ(n+1−s
2 )2 . Then we have the following result which is known as the 

ground state representation. In what follows the function u−s,δ is defined in (3.1).

Theorem 1.2 (Ground state representation). Let 0 < s < 1 and δ > 0. If f ∈ C∞
0 (Hn)

and g(x) = f(x)u−s,δ(x)−1 then

Hs[f ] = an,s

∫
Hn

∫
Hn

|g(x) − g(y)|2
|y−1x|Q+2s u−s,δ(x)u−s,δ(y) dx dy,

where an,s is an explicit positive constant given by (5.2).
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Remark 1.3. It is possible to deduce a slightly weaker form of the inequality in Theo-
rem 1.1 from the sharp HLS inequality proved recently by Frank and Lieb in [20]. This 
inequality, as stated in [11, (3.2)], reads as

Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2ω s

n+1
2n+1

(∫
Hn

|g(z, w)|
2(n+1)
n+1−s dzdw

)n+1−s
(n+1)

≤ 〈Lsg, g〉

where Ls is the conformally covariant fractional power associated to a slightly different 
sublaplacian (see [11]) adapted to a different group structure. By applying Holder’s 
inequality we can prove

4s
Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2 ∫

Hn

|g(z, w)|2(
(1 + |z|2)2 + w2

)s dz dw ≤ 2
s

n+1 〈Lsg, g〉.

Consequently, rewriting the above in terms of our sublaplacian, we have the inequality

4s
Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2 ∫

Hn

|f(z, w)|2(
(1 + 1

4 |z|2)2 + w2
)s dz dw ≤ 2

s
n+1 〈Lsf, f〉

which is weaker than the inequality stated in Theorem 1.1. We refer to Section 5.4 for 
details.

From Theorem 1.1 we can deduce a Hardy inequality for the pure fractional power 
Ls. It can be shown that the operator Us := LsL−s is bounded and its operator norm is 
given by the constant

‖Us‖ = sup
k≥0

(
2k + n

2

)−s Γ(2k+n
2 + 1+s

2 )
Γ(2k+n

2 + 1−s
2 )

. (1.5)

Using an integral representation for a ratio of gamma functions, ‖Us‖ can be estimated, 
see Subsection 5.3. The Hardy inequality for Ls is shown in the following theorem.

Theorem 1.4. Let 0 < s < n+1
2 and δ > 0. Then

(4δ)s
Γ
(1+n+s

2
)2

Γ
( 1+n−s

2
)2 ∫

Hn

|f(z, w)|2(
(δ + 1

4 |z|2)2 + w2
)s dz dw ≤ ‖Us‖〈Lsf, f〉

for all functions f ∈ W s,2(Hn).

We now turn our attention to a version of Hardy inequality with an homogeneous 
weight function. As before, we do not deal directly with Ls and the required inequality 
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will be proved from the following inequality for the related operator

Λs := L−1
1−sL, (1.6)

which behaves like Ls.

Theorem 1.5 (Hardy inequality in the homogeneous case). Let 0 < s < 1. Then

22n+3sΓ
(
n+s

2
)2

Γ(1 − s)Γ
(
n
2
)2 ∫

Hn

|f(z, w)|2
|(z, w)|2s dz dw ≤ 〈Λsf, f〉

for all f ∈ C∞
0 (Hn).

We also have a ground state representation in this case, see Theorem 5.4.
As the operator Vs := ΛsL−s = L−1

1−sLL−s is bounded on L2(Hn) we can immediately 
get the following result.

Theorem 1.6. Let 0 < s < 1. Then

22n+3sΓ
(
n+s

2
)2

Γ(1 − s)Γ
(
n
2
)2 ∫

Hn

|f(z, w)|2
|(z, w)|2s dz dw ≤ ‖Vs‖〈Lsf, f〉

for all f ∈ C∞
0 (Hn).

We will show an estimate for ‖Vs‖ in Subsection 5.3.
We do not know if the constants appearing in Theorems 1.5 and 1.6 are optimal or 

not. We also remark that it is not possible to obtain the homogeneous case from the 
non-homogeneous one just by letting δ go to 0.

Remark 1.7. An analogue of Theorem 1.6 in the more general context of stratified groups 
has been proved recently in the nice work [13] using different methods. They have also 
deduced Heisenberg uncertainty principle and logarithmic uncertainty inequality for frac-
tional powers of the sublaplacian. They do not have information about the constants 
involved.

We can deduce Heisenberg type uncertainty inequalities for Ls and Λs from our Hardy 
inequalities as well. This was done by N. Garofalo and E. Lanconelli for the sublaplacian 
in [22, Corollary 2.2].

Corollary 1.8 (Uncertainty principles for the fractional powers of the sublaplacian). For 
all functions f ∈ W s,2(Hn), we have
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(4δ)s
Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2( ∫

Hn

|f(z, w)|2 dz dw
)2

≤
( ∫
Hn

|f(z, w)|2
(
(δ + 1

4 |z|
2)2 + w2)s dz dw)〈Lsf, f〉

provided 0 < s < n+1
2 . In the smaller range 0 < s < 1 we have

22n+3sΓ
(
n+s

2
)2

Γ(1 − s)Γ
(
n
2
)2 ( ∫

Hn

|f(z, w)|2 dz dw
)2

≤
( ∫
Hn

|f(z, w)|2|(z, w)|2s dz dw
)
〈Λsf, f〉.

The uncertainty principles are obtained from the Hardy inequalities in Theorems 1.1
and 1.5. Indeed, if we denote by W(z, w) either the non-homogeneous weight 

(
(δ +

1
4 |z|2)2 + w2)s or the homogeneous weight |(z, w)|2s we have, by Cauchy–Schwarz in-
equality,

∫
Hn

|f(z, w)|2 dz dw

≤
( ∫
Hn

|f(z, w)|2W(z, w) dz dw
)1/2( ∫

Hn

|f(z, w)|2W(z, w)−1 dz dw
)1/2

.

The last integral is bounded by 〈Lsf, f〉1/2 or 〈Λsf, f〉1/2 times the corresponding con-
stant, by Hardy’s inequality.

Our results are based on ideas presented in [21]. In this regard, we prove ground 
state representations for the fractional differential operators involved. The first goal to 
establish the ground state representations is the choice of the “ground states”, which are 
intimately related to the fundamental solutions of the operators involved. To determine 
these ground states we use a result by M. Cowling and U. Haagerup, that we show here 
in a more general version, and with a slightly different proof. The other key ingredients 
are the integral representations with explicit kernels that we obtain for Ls and Λs. These 
integral representations seem to be new in the literature, and the approach we use to 
prove them is through the language of semigroups.

At this point, we would like to highlight the usefulness of the semigroup theory, 
that gives us the chance to get integral representations for our operators. Actually, the 
integral representation of the operator Δs in the Euclidean case, given for instance in 
[21, Lemma 3.1], can be easily obtained with the semigroup approach, see Appendix.

As far as we know, apart from the results in [13], there is no work related to Hardy-type 
inequalities for fractional powers of the sublaplacian. However, there are a couple of 
papers dealing with Hardy type inequalities involving the Heisenberg gradient. In [1]
Adimurthi and A. Sekar have proved the following inequality for the Heisenberg gradient:
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(
2(n + 2 − p)

p

)p ∫
Hn

|z|2|f(z, w)|p
(|z|4 + w2) p

2
dz dw ≤

∫
Hn

|∇Hf(z, w)|p
|(z, w)|p−2 dz dw

valid for 1 < p < (n +2). Observe that when p = 2 the above inequality is comparable to 
our result with s = 1/2 but the weight functions are different though of the same homo-
geneity. Their proof relied on explicit computations of the gradient of the fundamental 
solution associated to the sublaplacian. A similar inequality with Carnot–Carathéodory 
distance in place of the homogeneous norm is proved by D. Danielli et al. in [15] but 
again only for the gradient.

Finally, we remark that though we treat only the Heisenberg group in this paper, all 
the results can be proved in the more general setting of H-type groups.

The outline of the paper is the following. In Section 2 we give preliminaries, definitions 
and facts concerning the Heisenberg group, the fractional powers of the sublaplacian, 
and the heat and certain modified heat kernels related to the sublaplacian. Next, in 
Section 3, we prove a slightly more general version of some results of Cowling–Haagerup 
in [14, Section 3] which allows us to take the suitable weights involved in the Hardy 
inequalities. The integral representations for the operators Ls and Λs are contained in 
Section 4. The ground state representations and the proofs of the Hardy inequalities 
stated as the main theorems are shown in Section 5. In Section 5 we also compare the 
Hardy inequalities we have just obtained for the operators Ls and Λs to the Hardy 
inequalities for the pure fractional powers Ls. Moreover, we show with detail the weaker 
Hardy inequality that can be obtained from the HLS inequality in [20]. In the final 
Appendix we show an integral representation for the fractional powers of the Euclidean 
Laplacian by means of the semigroup and the Hardy inequality that is deduced from 
that.

2. Preliminaries on the Heisenberg group

2.1. Representations of the Heisenberg group, Fourier and Weyl transforms

Let us first introduce some definitions and set up notations concerning the Heisenberg 
group. We refer the reader to the books of G.B. Folland [17], M.E. Taylor [29], and the 
monograph [10] of C. Berenstein et al. However, we closely follow the notations used in 
[30]. It is possible to work with Bargmann–Fock representations as was done in the papers 
by [14] and others. Nevertheless, it will be enough to stick to the Schrödinger picture for 
our purposes. We also warn the reader that our notation and certain definitions may be 
slightly different from those used by others.

Let Hn = Cn × R denote the (2n + 1) dimensional Heisenberg group with the group 
law

(z, w)(z′, w′) =
(
z + z′, w + w′ + 1 Im(z · z̄′)

)
,
2
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where z, z′ ∈ Cn and w, w′ ∈ R. We now recall some basic facts from the representation 
theory of the Heisenberg group. For each λ ∈ R∗ = R \ {0}, we have an irreducible 
unitary representation πλ of Hn realized on L2(Rn). The action of πλ(z, w) on L2(Rn)
is explicitly given by

πλ(z, w)ϕ(ξ) = eiλweiλ(x·ξ+ 1
2x·y)ϕ(ξ + y)

where ϕ ∈ L2(Rn) and z = x + iy. By a theorem of Stone and Von Neumann, any irre-
ducible unitary representation of Hn which acts as eiλw Id at the center of the Heisenberg 
group is unitarily equivalent to πλ. In view of this, there are representations of Hn which 
are realized on the Fock spaces and equivalent to πλ. As we mentioned at the beginning, 
we will not use these representations and refer the reader to [17] for details. There are 
also certain families of one dimensional representations which do not concern us here.

The group Fourier transform of a function f ∈ L1(Hn) is the operator-valued function 
defined, for each λ ∈ R∗, by

f̂(λ) := πλ(f) =
∫
Hn

f(z, w)πλ(z, w) dz dw.

With an abuse of language, we will call the group Fourier transform just the Fourier 
transform. Observe that for each λ, f̂(λ) is an operator acting on L2(Rn). When f ∈
L1∩L2(Hn), it can be shown that f̂(λ) is a Hilbert–Schmidt operator and the Plancherel 
theorem holds:

∫
Hn

|f(z, w)|2 dz dw = 2n−1

πn+1

∞∫
−∞

‖f̂(λ)‖2
HS|λ|n dλ, (2.1)

where ‖ · ‖HS is the Hilbert–Schmidt norm given by ‖T‖2
HS = tr(T ∗T ), for T a bounded 

operator, being T ∗ the adjoint operator of T . By polarizing the Plancherel identity we 
get the Parseval formula:

∫
Hn

f(z, w)g(z, w)dzdw = 2n−1

πn+1

∞∫
−∞

tr(f̂(λ)ĝ(λ)∗)|λ|n dλ.

Let fλ stand for the inverse Fourier transform of f in the central variable w

fλ(z) =
∞∫

−∞

f(z, w)eiλwdw. (2.2)

By taking the Euclidean Fourier transform of fλ(z) in the variable λ, we obtain
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f(z, w) = 1
2π

∞∫
−∞

e−iλwfλ(z) dλ. (2.3)

We will use this formula quite often. By the definition of πλ(z, w) and f̂(λ) it is easy to 
see that

f̂(λ) =
∫
Cn

fλ(z)πλ(z, 0)dz. (2.4)

The operator which takes a function g on Cn into the operator∫
Cn

g(z)πλ(z, 0)dz

is called the Weyl transform of g and is denoted by Wλ(g). Thus f̂(λ) = Wλ(fλ).
Taking the inverse Fourier transform in the central variable (2.2) is an important tool 

which is quite often employed in studying problems on Hn. It also converts the group 
convolution on Hn into the so-called twisted convolution on Cn. Let us recall that the 
convolution of f with g on Hn is defined by

f ∗ g(x) =
∫
Hn

f(xy−1)g(y)dy, x, y ∈ Hn.

With x = (z, w) and y = (z′, w′) the above takes the form

f ∗ g(z, w) =
∫
Hn

f((z, w)(−z′,−w′))g(z′, w′)dz′dw′

from which a simple computation shows that

(f ∗ g)λ(z) =
∫
Cn

fλ(z − z′)gλ(z′)e iλ
2 Im(z·z̄′)dz′.

The convolution appearing on the right hand side is called the λ-twisted convolution and 
is denoted by fλ ∗λ gλ(z). We remark that the relation f̂ ∗ g(λ) = f̂(λ)ĝ(λ) yields, from 
the definitions above, the relation Wλ(fλ ∗λ gλ) = Wλ(fλ)Wλ(gλ).

2.2. Hermite functions and the Heisenberg group

Now, for λ ∈ R∗ and each α ∈ Nn, we introduce the family of Hermite functions

Φλ
α(x) = |λ|n4 Φα(

√
|λ|x), x ∈ Rn.
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Here, Φα is the normalized Hermite function on Rn which is an eigenfunction of the 
Hermite operator H = −Δ + |x|2 with eigenvalue (2|α| + n), see for instance [30, Chap-
ter 1.4]. The system is an orthonormal basis for L2(Rn). In terms of Φλ

α we have the 
following formula

‖f̂(λ)‖2
HS =

∑
α∈Nn

‖f̂(λ)Φλ
α‖2

2

and hence, by (2.1), the Plancherel formula takes the form

∫
Hn

|f(z, w)|2 dz dw = 2n−1

πn+1

∞∫
−∞

( ∑
α∈Nn

‖f̂(λ)Φλ
α‖2

2

)
|λ|n dλ.

Moreover, we can write the spectral decomposition of the scaled Hermite operator 
H(λ) = −Δ + |λ|2|x|2 as

H(λ) =
∞∑
k=0

(2k + n)|λ|Pk(λ), (2.5)

for λ ∈ R∗, where Pk(λ) are the (finite-dimensional) orthogonal projections defined on 
L2(Rn) by

Pk(λ)ϕ =
∑
|α|=k

(ϕ,Φλ
α)Φλ

α,

where ϕ ∈ L2(Rn) and (·, ·) is the inner product in L2(Rn).
On the other hand, we define the scaled Laguerre functions of type (n − 1)

ϕλ
k(z) = Ln−1

k

(1
2 |λ||z|

2
)
e−

1
4 |λ||z|

2
. (2.6)

Here Ln−1
k are the Laguerre polynomials of type (n − 1), see [30, Chapter 1.4] for the 

definition and properties. It happens that {ϕλ
k}∞k=0 forms an orthogonal basis for the 

subspace consisting of radial functions in L2(Cn). These functions play an important role 
in the analysis on the Heisenberg group. Indeed, the so-called special Hermite expansion 
of a function g defined on Cn written in its compact form reads as

g(z) = (2π)−n|λ|n
∞∑
k=0

g ∗λ ϕλ
k(z).

The name special Hermite expansion is due to the fact that the above is a compact 
form of the expansion in terms of the special Hermite functions (πλ(z, 0)Φλ

α, Φλ
β) which 

are eigenfunctions of the Hermite operator on Cn, see [31]. The connection between the 
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Hermite projections Pk(λ) and the Laguerre functions ϕλ
k , via the Weyl transform, is 

given by the following important formula

Wλ(ϕλ
k) = (2π)n|λ|−nPk(λ). (2.7)

Observe that, in particular, for any function f on Hn, we have the expansion

fλ(z) = (2π)−n|λ|n
∞∑
k=0

fλ ∗λ ϕλ
k(z). (2.8)

We remark that when f is radial in the z variable, i.e. f(z, w) = f(r, w), r = |z|, its 
Fourier transform f̂(λ) becomes a function of the Hermite operator H(λ). To see this, it 
can be proved that

fλ ∗λ ϕλ
k(z) = cλk(fλ)ϕλ

k(z)

where cλk(fλ) are the Laguerre coefficients of the radial function fλ on Cn given by

cλk(fλ) = cn,λ
k!(n− 1)!

(k + n− 1)!

∫
Cn

fλ(z)ϕλ
k(z)dz,

where cn,λ is certain normalizing constant. Thus we have the expansion

fλ(z) = (2π)−n|λ|n
∞∑
k=0

cλk(fλ)ϕλ
k(z).

Then, by taking the Weyl transform and making use of (2.7) we obtain

f̂(λ) =
∞∑
k=0

cλk(fλ)Pk(λ).

We will use these relations in the sequel, and refer the reader to [30] or [31] for more 
details.

2.3. Fractional powers of the sublaplacian

We begin with the definition of the sublaplacian on the Heisenberg group. The Lie 
algebra of the Heisenberg group is generated by the (2n + 1) left invariant vector fields

Xj =
(

∂

∂xj
+ 1

2yj
∂

∂w

)
, Yj =

(
∂

∂yj
− 1

2xj
∂

∂w

)
, T = ∂

∂w
, j = 1, 2, . . . , n.

The sublaplacian L is defined by
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L = −
n∑

j=1
(X2

j + Y 2
j )

which can be explicitly calculated. In fact, if we let

N =
n∑

j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
then

L = −Δ − 1
4 |z|

2 ∂2

∂w2 + N
∂

∂w

where Δ is the Laplacian on Cn. This operator is the counterpart of the Laplacian on Rn. 
Moreover, it is a second order subelliptic operator on Hn which is homogeneous of degree 
two under the non-isotropic dilations δr(z, w) = (rz, r2w). A fundamental solution of L
was found by Folland [16].

We proceed to obtain the spectral decomposition of the sublaplacian which will be 
then used to define fractional powers of L. The decomposition is achieved via the special 
Hermite expansion introduced in the previous subsection. The action of the Fourier 
transform on functions of the form Lf and Tf are given by

(Lf )̂(λ) = f̂(λ)H(λ), (Tf )̂(λ) = −iλf̂(λ).

If Lλ is the operator defined by the relation (Lf)λ = Lλf
λ then it follows that

Wλ(Lλf
λ) = Wλ(fλ)H(λ).

Recalling the spectral decomposition of H(λ) given in (2.5) and the identity (2.7) we 
obtain

Lλf
λ(z) = (2π)−n

∞∑
k=0

(2k + n)|λ|fλ ∗λ ϕλ
k(z).

Thus, by taking the Fourier transform in the variable λ (2.3), the spectral decomposition 
of the sublaplacian is given by

Lf(z, w) = (2π)−n−1
∞∫

−∞

( ∞∑
k=0

(2k + n)|λ|fλ ∗λ ϕλ
k(z)

)
e−iλw|λ|ndλ. (2.9)

Therefore, a natural way to define fractional powers of the sublaplacian is via the 
spectral decomposition
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Lsf(z, w) = (2π)−n−1
∞∫

−∞

( ∞∑
k=0

(
(2k + n)|λ|

)s
fλ ∗λ ϕλ

k(z)
)
e−iλw|λ|ndλ.

Note that (̂Lsf)(λ) = f̂(λ)H(λ)s.
However, it is convenient to work with the following modified fractional powers Ls. 

As mentioned in the introduction, the operators Ls occur naturally in the context of CR 
geometry and scattering theory on the Heisenberg group. When we identify Hn as the 
boundary of the Siegel’s upper half space in Cn+1 the operators Ls have the important 
property of being conformally invariant. For 0 ≤ s < (n + 1) the operator Ls is defined 
by

Lsf(z, w) = (2π)−n−1
∞∫

−∞

( ∞∑
k=0

(2|λ|)s
Γ(2k+n

2 + 1+s
2 )

Γ(2k+n
2 + 1−s

2 )
fλ ∗λ ϕλ

k(z)
)
e−iλw|λ|ndλ. (2.10)

In short, the above means that Ls is the operator (see [11, (1.33)])

Ls := (2|T |)s
Γ
( L

2|T | + 1+s
2

)
Γ
( L

2|T | + 1−s
2

) .
Thus Ls corresponds to the spectral multiplier

(2|λ|)s
Γ
(2k+n

2 + 1+s
2

)
Γ
(2k+n

2 + 1−s
2

) , k ∈ N. (2.11)

Note that L1 = L whose explicit fundamental solution was found by Folland and given 
by a constant multiple of |(z, w)|−Q+2 where Q = 2(n +1) is the homogeneous dimension 
of Hn. It is known that Ls also has an explicit fundamental solution, see e.g. page 530 
in [14] (more details will be given in Section 3). This makes it more suitable than Ls, 
whose fundamental solution cannot be written down explicitly. Moreover, Ls is not very 
different from Ls. Using Stirling’s formula for the Gamma function, it is easy to see that 
Ls = UsLs where Us is a bounded operator on L2(Hn), as explained in the introduction.

In view of (2.9), by taking the inverse Fourier transform in the central variable, the 
operator L can be written as

∞∫
−∞

Lf(z, w)eiλw dw = (2π)−n|λ|n
∞∑
k=0

(2k + n)|λ|fλ ∗λ ϕλ
k(z). (2.12)

Analogously, in view of (2.10), by taking the inverse Fourier transform in the central 
variable, the operator Ls is given by the spectral decomposition

∞∫
Lsf(z, w)eiλw dw = (2π)−n|λ|n

∞∑
k=0

(2|λ|)s
Γ
( 2k+n

2 + 1+s
2

)
Γ
( 2k+n

2 + 1−s
2

)fλ ∗λ ϕλ
k(z), (2.13)
−∞
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and the inverse of the operator Ls is given by

∞∫
−∞

L−1
s f(z, w)eiλw dw = (2π)−n|λ|n

∞∑
k=0

(2|λ|)−s Γ
(2k+n

2 + 1−s
2

)
Γ
(2k+n

2 + 1+s
2

)fλ ∗λ ϕλ
k(z). (2.14)

Notice that L−1
s = L−s, and it can be expressed by convolution with a kernel which we 

will explicitly calculate in Section 4.

2.4. Heat kernel and modified heat kernels for the sublaplacian

The sublaplacian is a self-adjoint, non-negative, hypoelliptic operator, and it generates 
a contraction semigroup which we denote by e−tL. This semigroup is defined by the 
relation

̂(e−tLf)(λ) = f̂(λ)e−tH(λ)

where e−tH(λ) is the Hermite semigroup generated by H(λ):

e−tH(λ) =
∞∑
k=0

e−(2k+n)|λ|tPk(λ).

In view of the results from the preceding subsections, it follows that

∞∫
−∞

e−tLf(z, w)eiλw dw = (2π)−n|λ|n
∞∑
k=0

e−(2k+n)|λ|tfλ ∗λ ϕλ
k(z).

If we define qt by the equation

∞∫
−∞

qt(z, w)eiλw dw = (2π)−n|λ|n
∞∑
k=0

e−(2k+n)|λ|tϕλ
k(z) =: qλt (z) (2.15)

then we obtain e−tLf = f ∗ qt. The function qt is called the heat kernel, which is known 
to be positive and ∫

Hn

qt(z, w) dz dw = 1.

Moreover, the series defining qλt (z) can be summed, giving the explicit expression

qλt (z) = (4π)−n
( λ )n

e−
1
4λ(coth tλ)|z|2 , (2.16)
sinh tλ
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see [31, Theorem 2.8.1]. The heat kernel qt(z, w) satisfies the following estimate (see [31, 
Proposition 2.8.2])

qt(z, w) ≤ cnt
−n−1e−

a
t |(z,w)|2

for some positive constants cn and a.
We are interested in proving a ground state representation for the fractional powers Ls. 

For this we need to obtain an integral representation for Ls (stated as Proposition 4.1). 
In the Euclidean case the corresponding representation reads as

Δsf(x) =
∞∫
0

(
f(x) − f ∗ pt(x)

)
t−s−1dt

where pt is the heat kernel associated to Δ. From the explicit form of the heat kernel pt
we can easily prove the representation (see Proposition A.2)

Δsf(x) = cn,s

∞∫
0

(
f(x) − f(y)

)
|x− y|−n−2sdy.

Using the heat kernel qt for L it is not difficult to show that

Lsf(x) =
∞∫
0

(
f(x) − f ∗ qt(x)

)
t−s−1dt (2.17)

which unfortunately cannot be simplified to yield a usable representation.
Since we need to prove such an integral representation for Ls we have to deal with 

certain kernels related to qt. For 0 < s < 1, let us define the modified heat kernel Ks
t (z, w)

by the equation

∞∫
−∞

Ks
t (z, w)eiλw dw = qλt (z)

( λt

sinhλt

)s+1
, (2.18)

where qλt (z) is the heat kernel given in (2.16). It is known that Ks
t is related to the heat 

kernel associated to a generalized sublaplacian and hence it is positive. In fact, as shown 
in [25], for any α > −1

2 the function Kt,α(r, w) defined by the equation

∞∫
−∞

Kt,α(r, w)eiλwdw = (4π)−α−1
( λ

sinhλt

)α+1
e−

1
4λ(coth λt)r2

is the heat kernel associated to the generalized sublaplacian
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− ∂2

∂r2 − 2α + 1
r

∂

∂r
− 1

4r
2 ∂2

∂w2 , r > 0, w ∈ R

and hence positive. Consequently, Ks
t (z, w) = ts+1Kt,n+s+1(|z|, w) is also positive. In 

terms of this kernel we obtain a formula for Ls similar to (2.17) (see Proposition 4.1). 
Moreover, the integral 

∫∞
0 Ks

t (z, w)t−s−1dt can be evaluated explicitly, see Proposi-
tion 4.2. Some more important (but easily proved) properties of this kernel Ks

t (z, w)
are stated in the following lemma.

Lemma 2.1. Let n ≥ 1, 0 < s < 1. For (z, w) ∈ Hn, we have∫
Hn

Ks
t (z, w) dz dw = 1. (2.19)

Moreover, it satisfies the estimate

Ks
t (z, w) ≤ cnt

−n−1e−
a
t |(z,w)|2 , (2.20)

for some positive constants cn and a.

Proof. By letting λ go to 0 in (2.18) we see that

∞∫
−∞

Ks
t (z, w) dw = (4πt)−ne−

1
4t |z|

2
.

From this, (2.19) follows immediately. For the estimate (2.20) we refer to [26] where the 
authors use the same argument as in [31] to prove the required estimate. �

In order to deal with Λs we define another modified heat kernel Ks
t by the relation

∞∫
−∞

Ks
t (z, w)eiλw dw = qλt (z)(cosh tλ)

( λt

sinhλt

)2−s

. (2.21)

We strongly believe that this kernel is positive even though we do not have a proof. 
However, all we need are the following properties.

Lemma 2.2. Let n ≥ 1, 0 < s < 1. For (z, w) ∈ Hn, we have∫
Hn

Ks
t (z, w) dz dw = 1. (2.22)

Moreover, it satisfies the estimate
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|Ks
t (z, w)| ≤ cnt

−n−1e−
a
t |(z,w)|2 , (2.23)

for some positive constants cn and a.

Proof. The integral (2.22) is evaluated as above. The estimate (2.23) can be proved by 
modifying the proof given in [31, Proposition 2.8.2] for the heat kernel qt on Hn (see 
[26]). �

We remark that the integral 
∫∞
0 Ks

t (z, w)t−s−1dt can also be evaluated explicitly, see 
Proposition 4.4.

3. A fundamental solution for Ls and the Cowling–Haagerup formula

Our proof of Hardy’s inequality for the fractional powers of L hinges on Theorem 3.1
below, which is essentially proved by Cowling and Haagerup in [14, Section 3]. However, 
for the sake of completeness we indicate a slightly different proof here. Following [14, 
p. 530] we define, for δ ≥ 0,

us,δ(z, w) =
((

δ + 1
4 |z|

2)2 + w2
)− s+n+1

2
, (3.1)

where (z, w) ∈ Hn. Note that

us,0(z, w) =
( 1

16 |z|
4 + w2

)− s+n+1
2 = 4s+n+1|(z, w)|−Q−2s (3.2)

where |(z, w)| = (|z|4 + 16w2) 1
4 is the homogeneous norm on Hn and

Q = 2n + 2 (3.3)

is the homogeneous dimension of Hn. By an easy calculation we can check that us,δ ∈
L1(Hn) for any s > 0 whereas us,δ ∈ L2(Hn) for any s > −n+1

2 .

Theorem 3.1. Let δ > 0 and 0 < s < n+1
2 . Then for any f ∈ W s,2(Hn) we have

∫
Hn

Lsf(x)u−s,δ(x)dx = (4δ)s
Γ
(
n+1+s

2
)2

Γ
(
n+1−s

2
)2 ∫

Hn

f(x)us,δ(x)dx.

In order to prove Theorem 3.1, we need to calculate the Fourier transform of us,δ. The 
Fourier transform of us,1 was computed in [14, Theorem 3.5] and [14, Proposition 3.6]. 
Note that us,δ is a radial function in the z variable and hence ûs,δ(λ) is a function of the 
Hermite operator H(λ), as explained in Subsection 2.2. In this way, let us write
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ûs,δ(λ) =
∞∑
k=0

cλk,δ(s)Pk(λ). (3.4)

Therefore, the task boils down to computing the coefficients cλk,δ(s). As we have men-
tioned this has been done already in [14] for the case δ = 1 but for the sake of 
completeness we include a different, more general proof here. This result is stated in 
Proposition 3.2. As a consequence, we prove Theorem 3.1 which, in its turn, is a key 
ingredient in proving Hardy’s inequality for Ls. Moreover, at the end of this section, 
we also obtain a closed form expression for the fundamental solution of the operator Ls

which is needed in the proof of Hardy’s inequality for L−1
s L.

The coefficients cλk,δ(s) involve an auxiliary function which is given by the following 
integral: for a, b ∈ R+ and c ∈ R we define

L(a, b, c) =
∞∫
0

e−a(2x+1)xb−1(1 + x
)−c

dx. (3.5)

The following proposition expresses cλk,δ(s) in terms of L.

Proposition 3.2. For δ > 0 and 0 < s < n+1
2 , we have

cλk,δ(s) = (2π)n+1|λ|s

Γ
(1

2 (n + 1 + s)
)2L(δ|λ|, 2k + n + 1 + s

2 ,
2k + n + 1 − s

2

)
,

where cλk,δ(s) are the coefficients appearing in the formula for ûs,δ(λ) in (3.4).

Proof. We begin with the following generating function identity for the Laguerre func-
tions of type n − 1, valid for |w| < 1 (see [30, (1.4.24)])

∞∑
k=0

wkLn−1
k

(1
2r

2
)
e−

1
4 r

2
= (1 − w)−ne−

1
4

1+w
1−w r2

.

By taking w = x
x+|λ| and changing r2 into |λ|r2 we obtain

∞∑
k=0

(
x

x + |λ|

)k

Ln−1
k

(1
2 |λ|r

2
)
e−

1
4 |λ|r

2
= |λ|−n(x + |λ|)ne− 1

4 (2x+|λ|)r2
. (3.6)

For functions f, g defined on (0, ∞) let F, G be their Laplace transforms defined by

F (a + ib) =
∞∫
0

e−(a+ib)xf(x)dx, G(a + ib) =
∞∫
0

e−(a+ib)xg(x)dx, a > 0, b ∈ R.

Take β = 1 (n + 1 + s). Then with f(x) = g(x) = Γ(β)−1xβ−1e−δx, x > 0, we have
2
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F (a + ib) = G(a + ib) = (δ + a + ib)−β . (3.7)

On the other hand, it can be checked, see [14, Lemma 3.4], that

∞∫
−∞

F (a + ib)G(a + ib)e−i|λ|bdb = 2π
∞∫
0

f(x)g(x + |λ|)e−a(2x+|λ|)dx. (3.8)

Therefore, by (3.7) and (3.8), with a = 1
4r

2, we get

∞∫
−∞

((
δ + 1

4r
2)2 + b2

)− 1
2 (n+1+s)

e−i|λ|bdb = 2π
∞∫
0

f(x)g(x + |λ|)e− 1
4 (2x+|λ|)r2

dx.

As the function us,δ(z, w) in (3.1) is even in the w variable, the above formula means, 
by taking into account (2.2),

(us,δ)λ(z) = 2π
∞∫
0

f(x)g(x + |λ|)e− 1
4 (2x+|λ|)|z|2dx. (3.9)

Using the expansion (3.6), we can write

e−
1
4 (2x+|λ|)|z|2 = |λ|n(x + |λ|)−n

∞∑
k=0

( x

x + |λ|
)k

Ln−1
k

(1
2 |λ||z|

2
)
e−

1
4 |λ||z|

2
,

so plugging this in (3.9) we obtain

(us,δ)λ(z) = (2π)−n|λ|n
∞∑
k=0

cλk,δ(s)Ln−1
k

(1
2 |λ||z|

2
)
e−

1
4 |λ||z|

2

where the coefficients are given by

cλk,δ(s) = (2π)n+1
∞∫
0

f(x)g(x + |λ|)(x + |λ|)−n−kxkdx

= (2π)n+1

Γ
(1

2 (n + 1 + s)
)2

∞∫
0

e−δ(2x+|λ|)xβ+k−1(x + |λ|)β−k−n−1dx.

After simplification, in view of (3.5), we get

cλk,δ(s) = (2π)n+1|λ|s(1 )2L
(
δ|λ|, 2k + n + 1 + s

2 ,
2k + n + 1 − s

2

)
.

Γ 2 (n + 1 + s)
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Moreover, by (2.4),

ûs,δ(λ) =
∫
Cn

(us,δ)λ(z)πλ(z, 0)dz,

and using (2.6) and (2.7), i.e., the fact that∫
Cn

Ln−1
k

(1
2 |λ||z|

2
)
e−

1
4 |λ||z|

2
πλ(z, 0)dz = (2π)n|λ|−nPk(λ)

we immediately get, in view of the expansion for (us,δ)λ(z),

ûs,δ(λ) =
∞∑
k=0

cλk,δ(s)Pk(λ).

This completes the proof of the proposition. �
According to [14, Proposition 3.6] the function L satisfies the following identity

(2λ)a

Γ(a) L(λ, a, b) = (2λ)b

Γ(b) L(λ, b, a)

for all a, b ∈ C and λ > 0. Using this identity and the formula for cλk,δ(s) given in 
Proposition 3.2 we obtain the following relation between cλk,δ(s) and cλk,δ(−s).

Proposition 3.3. For δ > 0 and 0 < s < n+1
2 we have

cλk,δ(−s) = (2δ)s|λ|−s Γ
(
n+1+s

2
)2

Γ
(
n+1−s

2
)2 Γ

(2k+n
2 + 1−s

2
)

Γ
(2k+n

2 + 1+s
2

)cλk,δ(s).
Proof of Theorem 3.1. In view of Plancherel theorem for the Fourier transform on Hn

given in (2.1), we only have to show that

̂(Lsu−s,δ)(λ) = (4δ)s
Γ
(
n+1+s

2
)2

Γ
(
n+1−s

2
)2 ûs,δ(λ)

for any λ ∈ R∗. Now it is easy to see that Theorem 3.1 follows from Proposition 3.3. 
Indeed, we have

û−s,δ(λ) =
∞∑
k=0

cλk,δ(−s)Pk(λ).

By (2.11) and Proposition 3.3 it immediately follows that
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̂(Lsu−s,δ)(λ) = (4δ)s
Γ
(
n+1+s

2
)2

Γ
(
n+1−s

2
)2 ∞∑

k=0

cλk,δ(s)Pk(λ) = (4δ)s
Γ
(
n+1+s

2
)2

Γ
(
n+1−s

2
)2 ûs,δ(λ).

And this proves the theorem. �
In view of Theorem 3.1, L−1

s occurs as an intertwining operator between ûs,δ(λ) and 
û−s,δ(λ). The family of functions us,δ are defined even for complex values of s and they 
are locally integrable as long as Re(s) < 0. It has a meromorphic continuation as a 
distribution for other values of s. This justifies that we can apply Proposition 3.2 to 
cλk,δ(−s). Assuming that 0 < s < n+1

2 and letting δ tend to 0 in the formula for cλk,δ(−s)
we obtain

û−s,0(λ) = (2π)n+1|λ|−s

Γ
(1

2 (n + 1 − s)
)2 ∞∑

k=0

L
(
0, 2k + n + 1 − s

2 ,
2k + n + 1 + s

2

)
Pk(λ).

It can be easily checked that

L
(
0, 2k + n + 1 − s

2 ,
2k + n + 1 + s

2

)
= Γ(s)

Γ
( 2k+n

2 + 1−s
2

)
Γ
( 2k+n

2 + 1+s
2

) .
This together with (2.11) means that

̂(Lsu−s,0)(λ) = (2π)n+12sΓ(s)
Γ
(1

2 (n + 1 − s)
)2 Id .

In other words, by (3.2), we have that the function

Γ
(1

2 (n + 1 − s)
)2

(2π)n+12sΓ(s) u−s,0(z, w) = 2n+1−3s

πn+1Γ(s)Γ
(1

2(n + 1 − s)
)2

|(z, w)|−Q+2s

is a fundamental solution for the operator Ls. When s = 1 this reduces to

2n−2

πn+1 Γ
(n

2

)2
|(z, w)|−Q+2

which is the fundamental solution of L found by Folland in [16]. Let us denote the 
fundamental solution of Ls by gs. Thus, summarizing, for x = (z, w) ∈ Hn, the function

gs(x) =
2n+1−3sΓ

(
n+1−s

2
)2

πn+1Γ(s) |x|−Q+2s, (3.10)

is the fundamental solution of Ls, i.e., it satisfies Lsgs = δ0, where δ0 is the Dirac delta 
distribution with support at 0.
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4. Integral representations

In order to prove Hardy’s inequalities in the Heisenberg group, we will follow some 
ideas used by Frank et al. [21] in the case of the Laplacian on Rn. Therefore, we need to 
establish ground state representations for the operators Λs and Ls. These ground state 
representations will be proved in the next section as consequences of integral representa-
tions for Λs and Ls which we show in this section. Once again, we remark that the way 
to get the integral representations is based on the definitions with the heat semigroup.

Along the section, we will make use of several formulas and identities. We collect them 
here altogether.

We will use the identity (see [23, p. 382, 3.541.1])

∞∫
0

e−μt sinhν βt dt = 1
2ν+1

Γ
(

μ
2β − ν

2

)
Γ(ν + 1)

Γ
(

μ
2β + ν

2 + 1
) , (4.1)

which is valid for Reβ > 0, Re ν > −1, Reμ > Reβν.
In order to evaluate several integrals that arise later, we shall use (see [23, p. 498, 

3.944.6])

∞∫
0

xμ−1e−βx(cos δx) dx = Γ(μ)
(δ2 + β2)μ/2

cos
(
μ arctan δ

β

)
, (4.2)

valid for Reμ > 0, Reβ > | Im δ|. Also, we have the formula [23, p. 406, 3.663.1]

u∫
0

(cosx− cosu)ν− 1
2 cos ax dx =

√
π

2 (sin u)νΓ
(
ν + 1

2

)
P−ν
a− 1

2
(cosu), (4.3)

valid for Re ν > −1
2 , a > 0, 0 < u < π, where P−ν

a− 1
2

is an associated Legendre function 

of the first kind (see for instance [23, Sections 8.7–8.8]). On the other hand, we have [23, 
p. 406, 3.663.2]

u∫
0

(cosx−cosu)ν−1 cos[(ν+β)]x dx =
√
πΓ(β + 1)Γ(ν)Γ(2ν)(sin u)2ν−1

2νΓ(β + 2ν)Γ
(
ν + 1

2
) Cν

β(cosu), (4.4)

valid for Re ν > 0, Reβ > −1, 0 < u < π, where Cν
β is a Gegenbauer polynomial (see for 

instance [23, Section 8.93]).
Recall the following representation for the associated Legendre function ([23, p. 969, 

8.755])

P−ν
ν (cosϕ) =

( sin ϕ
2

)ν
. (4.5)
Γ(1 + ν)
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Finally, it is known that

Cν
1 (cos γ) = 2ν cos γ, (4.6)

see for instance [23, Section 8.93].

4.1. The non-homogeneous case: the operator Ls

In this subsection we prove an integral representation for the operator Ls. Recall the 
kernel Ks

t (2.18) whose properties have been stated in Lemma 2.1. In terms of this kernel 
we define another kernel Ks by

Ks(z, w) =
∞∫
0

Ks
t (z, w)t−s−1dt. (4.7)

This kernel can be explicitly calculated (see Proposition 4.2):

Ks(z, w) = cn,s|(z, w)|−Q−2s (4.8)

where cn,s is a positive constant which can be explicitly determined. Observe that the 
kernel Ks is homogeneous of degree −Q − 2s. We obtain an integral representation for 
the operator Ls in the proposition below.

Proposition 4.1. Let n ≥ 1 and 0 < s < 1. Then for all f ∈ W s,2(Hn) we have

Lsf =
∞∫
0

(f − f ∗ Ks
t )t−s−1dt.

Moreover, the following pointwise representation is valid for all f ∈ C∞
0 (Hn):

Lsf(x) = 1
|Γ(−s)|

∫
Hn

(
f(x) − f(y)

)
Ks(y−1x) dy,

where Ks(x) is given in (4.8).

Proof. We begin with the identity (4.1), taking ν = −s, β = 1 and turning μ → μ + 1. 
So, we have the formula

21−s

∞∫
0

e−(μ+1)t(sinh t)−s dt =
Γ(1 − s)Γ

(
μ
2 + 1+s

2
)

Γ
(
μ
2 + 1−s

2 + 1
) ,

which gives
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(μ + 1 − s)
∞∫
0

e−(μ+1)t(sinh t)−s dt =
2sΓ(1 − s)Γ

(
μ
2 + 1+s

2
)

Γ
(
μ
2 + 1−s

2
) . (4.9)

Moreover, an integration by parts gives

(μ + 1)
∞∫
0

e−(μ+1)t(sinh t)−s dt =
∞∫
0

d

dt
(1 − e−(μ+1)t)(sinh t)−s dt

= s

∞∫
0

(1 − e−(μ+1)t)(sinh t)−s−1(cosh t) dt.

Therefore, plugging the latter into (4.9), we get

2sΓ(1 − s)Γ
(
μ
2 + 1+s

2
)

Γ
(
μ
2 + 1−s

2
) = s

∞∫
0

(
cosh t− e−(μ+1)t(cosh t + sinh t)

)
(sinh t)−s−1 dt

= s

∞∫
0

(
cosh t− e−μt

)
(sinh t)−s−1 dt

= s

∞∫
0

(
cosh t− 1

)
(sinh t)−s−1 dt + s

∞∫
0

(
1 − e−μt

)
(sinh t)−s−1 dt

= c1s + s

∞∫
0

(
1 − e−μt

)
(sinh t)−s−1 dt

where c1 is the constant given by

c1 :=
∞∫
0

(
cosh t− 1

)
(sinh t)−s−1 dt.

Thus, by taking μ = 2k + n and changing t into |λ|t, we have

2sΓ(1 − s)
s

Γ
( 2k+n

2 + 1+s
2

)
Γ
( 2k+n

2 + 1−s
2

) = c1 +
∞∫
0

(
1 − e−(2k+n)t)(sinh t)−s−1 dt

= c1 + |λ|
∞∫
0

(
1 − e−(2k+n)|λ|t)(sinh t|λ|)−s−1 dt.

We now multiply both sides by |λ|sfλ ∗λ ϕλ
k(z). Thus
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Γ(1 − s)
s

(2|λ|)s
Γ
(2k+n

2 + 1+s
2

)
Γ
(2k+n

2 + 1−s
2

)fλ ∗λ ϕλ
k(z) = c1|λ|sfλ ∗λ ϕλ

k(z)

+
∞∫
0

(
1 − e−(2k+n)|λ|t)( t|λ|

sinh tλ

)s+1
fλ ∗λ ϕλ

k(z)t−s−1 dt.

Summing over k, and taking into account (2.8) and (2.15), we obtain

Γ(1 − s)
s

(2|λ|)s(2π)−n|λ|n
∞∑
k=0

Γ
( 2k+n

2 + 1+s
2

)
Γ
(2k+n

2 + 1−s
2

)fλ ∗λ ϕλ
k(z)

= c1|λ|sfλ(z) +
∞∫
0

(
fλ(z) − fλ ∗λ qλt (z)

)( tλ

sinh tλ

)s+1
t−s−1 dt,

where qλt is as in (2.16).
We now rewrite the last integral as a sum of the following two integrals:

A = fλ(z)
∞∫
0

(( tλ

sinh tλ

)s+1
− 1

)
t−s−1 dt,

B =
∞∫
0

(
fλ(z) −

( tλ

sinh tλ

)s+1
fλ ∗λ qλt (z)

)
t−s−1 dt.

Note that the first integral A is equal to

|λ|sfλ(z)
∞∫
0

(( t

sinh t

)s+1
− 1

)
t−s−1 dt =: −c2|λ|sfλ(z).

It happens that c1 = c2. Indeed,

c1 − c2 =
∞∫
0

(
cosh t− 1

)
(sinh t)−s−1 dt +

∞∫
0

(( t

sinh t

)s+1
− 1

)
t−s−1 dt

=
∞∫
0

(
(cosh t)(sinh t)−s−1 − t−s−1) dt.

Consider the integral

∞∫
(cosh t)(sinh t)−s−1 dt =

∞∫
t−s−1 dt =

∞∫
t−s−1 dt−

sinh δ∫
t−s−1 dt.
δ sinh δ δ δ
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This gives

∞∫
δ

(
(cosh t)(sinh t)−s−1 − t−s−1) dt = −

sinh δ∫
δ

t−s−1 dt,

which converges to 0 as δ → 0.
Therefore, by (2.2) and (4.8), the second integral B takes the form

∞∫
0

∞∫
−∞

(
f(z, w) − f ∗ Ks

t (z, w)
)
eiλw dwt−s−1 dt.

Consequently, by the spectral definition of Ls in (2.13), since s
Γ(1−s) = 1

|Γ(−s)| , we obtain

Lsf(z, w) = 1
|Γ(−s)|

∞∫
0

(
f(z, w) − f ∗ Ks

t (z, w)
)
t−s−1 dt.

The integral has to be interpreted as the Bochner integral of the L2(Hn) valued function 
t → f − f ∗ Ks

t . By Lemma 2.1, we have

f(x) − f ∗ Ks
t (x) = f(x) −

∫
Hn

f(y)Ks
t (y−1x) dy =

∫
Hn

(
f(x) − f(y)

)
Ks

t (y−1x) dy.

Thus we have proved the representation

Lsf(x) = 1
|Γ(−s)|

∞∫
0

( ∫
Hn

(f(x) − f(y))Ks
t (y−1x)dy

)
t−s−1dt.

We can interchange the order of integration: this is justified by using the stratified mean 
value theorem (see [18, (1.41)]) under the assumption that f ∈ C∞

0 . Then by (4.7), we 
obtain the required integral representation. By Proposition 4.2, the kernel Ks is given 
by (4.8). The proof is complete. �

In the next proposition we prove the explicit form of the kernel Ks. We are inspired 
by the ideas in [4].

Proposition 4.2. Let n ≥ 1 and 0 < s < 1. For (z, w) ∈ Hn, we have

Ks(z, w) = cn,s|(z, w)|−Q−2s

where the constant cn,s is given by
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cn,s = 2n−1+3sπ−n−1Γ
(n + s + 1

2

)2
, (4.10)

and Q is the homogeneous dimension of Hn, given in (3.3).

Proof. We start with the expression

∞∫
−∞

Ks(z, w)eiλw dw =
∞∫
0

qλt (z)
( t|λ|

sinh t|λ|
)s+1

t−s−1 dt.

that follows from (2.18) and (4.8). By (2.16), and since the functions involved are even 
in λ, we write

∞∫
−∞

Ks(z, w)eiλw dw = (4π)−n

∞∫
0

( λ

sinh tλ

)n+s+1
e−

1
4λ(coth tλ)|z|2 dt.

As the Fourier transform of Ks in the central variable w is an even function of λ we have, 
after taking the Fourier transform in the variable λ,

Ks(z, w) = 4−nπ−n−1
∞∫
0

∞∫
0

(cosλu)
( λ

sinh tλ

)n+s+1
e−

1
4λ(coth tλ)|z|2 dλ dt.

By the change of variables λ → λ|z|−2, t → t|z|2, we obtain

Ks(z, |z|2w) = |z|−2(n+s+1)Ks(1, w). (4.11)

Thus

Ks(1, w) =
∞∫
0

∞∫
0

(cosλw)
( λ

sinh tλ

)n+s+1
e−

λ
4 (coth tλ) dt dλ

= 4−nπ−n−1
∞∫
0

( ∞∫
0

(cosλw)λn+se−
λ
4 (coth t) dλ

)
(sinh t)−n+s+1 dt.

The integral in λ can be evaluated by using (4.2) with μ = n + s + 1, β = 1
4 (coth t) and 

δ = w. Then, we get

∞∫
0

(cosλw)λn+se−
λ
4 (coth t) dλ =

Γ(n + s + 1) cos
(
(n + s + 1) arctan

(
4w

coth t

))
(
w2 + 1

16 coth2 t
)n+s+1

2
.

Thus
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Ks(1, w) = Γ(n + s + 1)
4nπn+1

∞∫
0

cos
(
(n + s + 1) arctan

(
4w

coth t

))
(
w2 + 1

16 coth2 t
)n+s+1

2
(sinh t)−(n+s+1) dt. (4.12)

With the change of variables u = 4w
coth t we have that the latter integral equals

4w∫
0

( u2

16w2 − u2

)− (n+s+1)
2

(
w2 + 16w2

16u2

)− (n+s+1)
2 cos[(n + s + 1) arctanu] 4w

16w2 − u2 du

= 4w−(n+s)
4w∫
0

(16w2 − u2)
n+s−1

2 (1 + u2)−
n+s+1

2 cos[(n + s + 1) arctan u] du

= 4n+sw−1
4w∫
0

(
1 − u2

16w2

)n+s−1
2 (1 + u2)−

n+s+1
2 cos[(n + s + 1) arctanu] du.

Thus, with this and (4.12) we have

Ks(1, w) = 22sΓ(n + s + 1)
πn+1 w−1I, (4.13)

where

I :=
4w∫
0

(
1 − u2

16w2

)n+s−1
2 (1 + u2)−

n+s+1
2 cos[(n + s + 1) arctan u] du.

Now we will see that the above integral can be explicitly computed in terms of Legendre 
functions.

Making a second change of variable arctanu = z, the integral I becomes

I =
arctan 4w∫

0

(
cos2 z − sin2 z

16w2

)n+s−1
2 cos[(n + s + 1)z] dz.

We can rewrite the above integral as

I =
arctan 4w∫

0

(1 + cos 2z
2 − 1 − cos 2z

2 · 16w2

)n+s−1
2 cos[(n + s + 1)z] dz

= 2−
n+s−1

2

arctan 4w∫
0

(
(cos 2z)

(
1 + 1

16w2

)
−

( 1
16w2 − 1

))n+s−1
2

cos[(n + s + 1)z] dz

=
(1 + 16w2

32w2

)n+s−1
2

arctan 4w∫ (
cos 2z − 1 − 16w2

1 + 16w2

)n+s−1
2 cos[(n + s + 1)z] dz
0
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= 1
2

(1 + 16w2

32w2

)n+s−1
2

2 arctan 4w∫
0

(cosβ − cos γ)
n+s−1

2 cos
[ (n + s + 1)

2 β
]
dβ,

where cos γ = 1−16w2

1+16w2 . The integral can be evaluated using (4.3) by taking ν = n+s
2 and 

a = n+s+1
2 . With this, and by the representation for the associated Legendre function 

(4.5), the latter integral becomes√
π

2 (sin γ)
n+s

2 Γ
(n + s + 1

2

)
P

−n+s
2

n+s
2

(cos γ) =
√

π

2 Γ
(n + s + 1

2

)
(sin γ)

n+s
2

(sin γ)n+s
2

2n+s
2 Γ

(
n+s+2

2
)

=
√

π

2
Γ
(
n+s+1

2
)

2n+s
2 Γ

(
n+s+2

2
) (sin2 γ)

n+s
2

=
√

π

2
Γ
(
n+s+1

2
)

2n+s
2 Γ

(
n+s+2

2
) ( 8w

1 + 16w2

)n+s

,

because sin2 γ = 64w2

(1+16w2)2 . This gives

I = 1
2

√
π

2
Γ
(
n+s+1

2
)

2n+s
2 Γ

(
n+s+2

2
) (1 + 16w2

32w2

)n+s−1
2

( 8u
1 + 16w2

)n+s

=
√
π

2
Γ
(
n+s+1

2
)

Γ
(
n+s+2

2
)w(1 + 16w2)−

n+s+1
2 . (4.14)

Finally, plugging (4.14) into (4.13), we have

Ks(1, w) = 22sΓ(n + s + 1)
πn+1

√
π

2
Γ
(
n+s+1

2
)

Γ
(
n+s+2

2
) (1 + 16w2)−

n+s+1
2 ,

or, by (4.11)

Ks(z, w) = |z|−2(n+1+s)Ks

(
1, w

|z|2
)

= cn,s|(z, w)|−Q−2s

where the constant cn,s is given by

cn,s =
√
π

2−1+2sΓ(n + s + 1)
πn+1

Γ
(
n+s+1

2
)

Γ
(
n+s+2

2
) .

By using Legendre’s duplication formula

√
πΓ(2z) = 22z−1Γ(z)Γ

(
z + 1

2

)
(4.15)

with z = n+s+1 , and after simplification, we get
2
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cn,s = 2n−1+3sπ−n−1Γ
(n + s + 1

2

)2
.

The proof is complete. �
4.2. The homogeneous case: the operator Λs

Our goal in this subsection is to prove an integral representation for the operator Λs

defined in (1.6) similar to what we have done for Ls in Proposition 4.1. It is convenient 
to work with Λ1−s = L−1

s L and so we state our results for this operator.
Recall the modified heat kernel Ks

t (z, w) defined by (2.21). The properties of this 
kernel have been stated in Lemma 2.2. In terms of this kernel, we define another kernel 
Ks by

Ks(z, w) =
∞∫
0

Ks
t (z, w)ts−2 dt. (4.16)

The latter can be explicitly computed (see Proposition 4.4), and it turns out to be

Ks(z, w) = cn,s
|z|2

|(z, w)|2 |(z, w)|−Q−2(1−s). (4.17)

where cn,s is an explicit positive constant. Observe that the kernel Ks is homogeneous 
of degree −Q − 2(1 − s).

We can now prove the following integral representation for Λ1−s.

Proposition 4.3. Let n ≥ 1 and 0 < s < 1. Then for all f ∈ W 1−s,2(Hn) we have

Λ1−sf =
∞∫
0

(f − f ∗Ks
t )t−s−1dt.

Moreover, the following pointwise representation is valid for all f ∈ C∞
0 (Hn):

Λ1−sf(x) = 1
|Γ(s− 1)|

∫
Hn

(
f(x) − f(y)

)
Ks(y−1x) dy,

where Ks(x) is given in (4.17).

Proof. By taking ν = s − 1 and β = 1 in (4.1), we have

2s
∞∫
e−μt(sinh t)s−1 dt =

Γ(s)Γ
(
μ
2 + 1−s

2
)

Γ
(
μ
2 + 1+s

2
) .
0
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We rewrite the above identity as

2s
∞∫
0

d

dt
(1 − e−μt)(sinh t)s−1 dt = μ

Γ(s)Γ
(
μ
2 + 1−s

2
)

Γ
(
μ
2 + 1+s

2
) .

Integrating by parts we obtain

μ
Γ(s)Γ

(
μ
2 + 1−s

2

)
Γ
(

μ
2 + 1+s

2

) = 2s(1 − s)
∞∫
0

(1 − e−μt)(cosh t)(sinh t)s−2 dt.

By an argument analogous to the one used in the proof of Proposition 4.1, it can be 
checked that

∞∫
0

(
(cosh t)(sinh t)s−2 − ts−2) dt = 0.

In view of this we have

2−sμ
Γ(s)Γ

(
μ
2 + 1−s

2
)

Γ
(
μ
2 + 1+s

2
) = (1 − s)

∞∫
0

(
1 − e−μt(cosh t)

( t

sinh t

)2−s)
ts−2 dt.

Thus, by taking μ = 2k + n and changing t into |λ|t, we get

2−s(2k + n)
Γ(s)Γ

( 2k+n
2 + 1−s

2
)

Γ
(2k+n

2 + 1+s
2

) = (1 − s)
∞∫
0

(
1 − e−(2k+n)t(cosh t)

( t

sinh t

)2−s)
ts−2 dt

= (1 − s)|λ|s−1
∞∫
0

(
1 − e−(2k+n)t|λ|(cosh t|λ|)

( t|λ|
sinh t|λ|

)2−s)
ts−2 dt.

Multiplying both sides by (1 − s)−1(2π)−n|λ|n+1−sfλ ∗λ ϕλ
k(z) and summing over k, we 

see that

(1 − s)−1(2π)−n|λ|n
∞∑
k=0

Γ(s)Γ
( 2k+n

2 + 1−s
2

)
Γ
(2k+n

2 + 1+s
2

) (2|λ|)−s
(
(2k + n)|λ|

)
fλ ∗λ ϕλ

k(z)

= (2π)−n|λ|n
∞∫
0

( ∞∑
k=0

fλ ∗λ ϕλ
k(z) −

∞∑
k=0

e−(2k+n)t|λ|(cosh t|λ|)

×
( t|λ|

sinh t|λ|
)2−s

fλ ∗λ ϕλ
k(z)

)
ts−2 dt.
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By taking into account (2.12) and (2.14) on the left hand side, and (2.15) on the right 
hand side, we obtain

∞∫
−∞

eiλwΛ1−sf(z, w) dw

= (1 − s)
Γ(s)

∞∫
0

(
fλ(z) − fλ ∗λ qλt (z)(cosh t|λ|)

( t|λ|
sinh t|λ|

)2−s
)
ts−2 dt.

Then by (2.21), we can rewrite the above equation as

∞∫
−∞

eiλwΛ1−sf(z, w) dw = (1 − s)
Γ(s)

∞∫
0

(
fλ(z) − fλ ∗λ (Ks

t )λ(z)
)
ts−2 dt.

This simply means that

Λ1−sf(x) = (1 − s)
Γ(s)

∞∫
0

(f(x) − f ∗Ks
t (x))ts−2 dt.

By Lemma 2.2, we have

f(x) − f ∗Ks
t (x) = f(x) −

∫
Hn

f(y)Ks
t (y−1x) dy =

∫
Hn

(
f(x) − f(y)

)
Ks

t (y−1x) dy.

Thus we have proved the representation

Λ1−sf(x) = (1 − s)
Γ(s)

∞∫
0

( ∫
Hn

(
f(x) − f(y)

)
Ks

t (y−1x) dy
)
ts−2 dt,

or, equivalently, assuming that we could interchange the order of integration, which can 
be justified by using mean value theorem under the assumption that f ∈ C∞

0 (Hn), we 
get

Λ1−sf(x) = 1
|Γ(s− 1)|

∫
Hn

(
f(x) − f(y)

)
Ks(y−1x) dy,

where Ks is the kernel defined in (4.16). By Proposition 4.4, the kernel Ks is given by 
(4.17). This completes the proof of the proposition. �

In the next proposition we explicitly calculate the kernel Ks and show that has the 
explicit form (4.17). The proof follows the lines of Proposition 4.2 but with certain 
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modifications. Since tracking the constants is important, we show a complete proof, just 
skipping some computations analogous to the previous ones. Observe that, from the very 
definition, it is not difficult to check the homogeneity of Ks.

Proposition 4.4. Let n ≥ 1 and 0 < s < 1. Let Ks(z, w) be given by (4.16). For (z, w) ∈
Hn, we have

Ks(z, w) = cn,s
|z|2

|(z, w)|2 |(z, w)|−Q−2(1−s),

where the constant cn,s is given by

cn,s = 2n+5−3sπ−n−1Γ
(n− s + 3

2

)
Γ
(n + 1 − s

2

)
, (4.18)

and Q is the homogeneous dimension of Hn, given in (3.3).

Proof. We start with the expression which defines the kernel Ks, namely

∞∫
−∞

Ks(z, w)eiλw dw =
∞∫
0

qλt (z)(cosh t|λ|)
( t|λ|

sinh t|λ|
)2−s

ts−2 dt.

that follows from (2.21) and (4.16). By (2.16), and since the functions involved are even 
in λ, we write

∞∫
−∞

Ks(z, w)eiλw dw = (4π)−n

∞∫
0

(cosh tλ)
( λ

sinh tλ

)n+2−s

e−
1
4λ(coth tλ)|z|2 dt.

As the Fourier transform of Ks in the central variable w is an even function of λ we 
have, after taking the (Euclidean) Fourier transform in the variable λ (2.3),

Ks(z, w) = 4−nπ−n−1
∞∫
0

∞∫
0

(cosλw)
( λ

sinh tλ

)n+2−s

(cosh tλ)e− 1
4λ(coth tλ)|z|2 dλ dt.

By the change of variables λ → λ|z|−2, t → t|z|2, we obtain

Ks(z, |z|2w) = |z|−2(n+2−s)Ks(1, w). (4.19)

Thus
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Ks(1, w) =
∞∫
0

∞∫
0

(cosλw)(cosh tλ)
( λ

sinh tλ

)n+2−s

e−
λ
4 (coth tλ) dt dλ

= 4−nπ−(n+1)
∞∫
0

( ∞∫
0

(cosλw)λn+1−se−
λ
4 (coth t) dλ

)
(cosh t)(sinh t)−n−2+s dt.

The integral in λ can be evaluated using (4.2), by taking μ = n + 2 − s, β = 1
4 (coth t)

and δ = w. Then we get

∞∫
0

(cosλw)λn+2−s−1e−
λ
4 (coth t) dλ =

Γ(n + 2 − s) cos
(
(n− s + 2) arctan

(
4w

coth t

))
(
w2 + 1

16 coth2 t
)n−s+2

2
.

Therefore

Ks(1, w) = Γ(n + 2 − s)
4nπn+1

×
∞∫
0

cos
(
(n− s + 2) arctan

(
4w

coth t

))
(
w2 + 1

16 coth2 t
)n−s+2

2
(cosh t)(sinh t)−n−2+s dt. (4.20)

With the change of variables u = 4w
coth t we have that the latter integral equals

4n−s+1w−1
4w∫
0

(
1 − u2

16w2

)n−1−s
2 (1 + u2)

s−n−2
2 cos[(n + 2 − s) arctanu] du.

Thus, with this and (4.20), we have

Ks(1, w) = 22−2sΓ(n + 2 − s)
πn+1 w−1I, (4.21)

where

I :=
4w∫
0

(
1 − u2

16w2 )
n−1−s

2 (1 + u2)
s−n−2

2 cos[(n + 2 − s) arctanu] du.

Fortunately for us, we will see that the above integral can be explicitly computed in 
terms of Legendre functions and Gegenbauer polynomials.

Making a second change of variable arctanu = z, the integral I becomes

I =
arctan 4w∫

(cos2 z) 1
2

(
cos2 z − sin2 z

16w2

)n−s−1
2 cos[(n + 2 − s)z] dz.
0
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We can rewrite the above integral as

1
2

(1 + 16w2

32w2

)n−s−1
2

2 arctan 4w∫
0

(cosβ/2)(cosβ − cos γ)
n−s−1

2 cos
[ (n + 2 − s)

2 β
]
dβ,

where cos γ = 1−16w2

1+16w2 . By using the formulas cos(a ± b) = cos a cos b ∓ sin a sin b with 
a = β/2 and b = n−s+2

2 β, the latter integral is given as a sum of the following two 
integrals:

J1 :=
2 arctan 4w∫

0

(cosβ − cos γ)
n−s−1

2 cos
[ (n + 1 − s)

2 β
]
dβ

and

J2 :=
2 arctan 4w∫

0

(cosβ − cos γ)
n−s−1

2 cos
[ (n + 3 − s)

2 β
]
dβ.

The integral J1 can be evaluated using (4.3), by taking ν = n−s
2 and a = n+1−s

2 , and 
then representation for the associated Legendre function in (4.5). Thus we have

J1 =
√

π

2 (sin γ)
n−s

2 Γ
(n + 1 − s

2

)
P

−n−s
2

n−s
2

(cos γ)

=
√

π

2 Γ
(n + 1 − s

2

)
(sin γ)

n−s
2

(sin γ)n−s
2

2n−s
2 Γ

(
n−s+2

2
)

=
√

π

2
Γ
(
n+1−s

2
)

2n−s
2 Γ

(
n−s+2

2
) (sin2 γ)

n−s
2 .

On the other hand, J2 can be evaluated by using (4.4) with ν = n−s+1
2 and β = 1. Then 

we get

J2 =
√
πΓ(2)Γ

(
n−s+1

2
)
Γ(n− s + 1)(sin γ)n−s

2n−s+1
2 Γ(n− s + 2)Γ

(
n−s+2

2
) C

n−s+1
2

1 (cos γ).

With the identity (4.6), and after simplifying, we arrive at

J2 =
√

π

2
Γ
(
n+1−s

2
)

2n−s
2 Γ

(
n−s+2

2
) (sin2 γ)

n−s
2 (cos γ).

Thus

J1 + J2 =
√

π Γ
(
n+1−s

2
)

n−sΓ
(
n−s+2 ) (sin2 γ)

n−s
2 (1 + cos γ).
2 2 2 2
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Since cos γ = 1−16w2

1+16w2 , we have sin2 γ = 64w2

(1+16w2)2 and so

J1 + J2 =
√

π

2
Γ
(
n+1−s

2
)

2n−s
2 Γ

(
n−s+2

2
) ( 8w

1 + 16w2

)n−s( 2
1 + 16w2

)
.

This gives

I = 4
√
π

Γ
(
n+1−s

2
)

Γ
(
n−s+2

2
)w(1 + 16w2)−

n−s+3
2 . (4.22)

Finally, plugging (4.22) into (4.21), we have

Ks(1, w) = 4
√
π

22−2sΓ(n + 2 − s)
πn+1

Γ
(
n+1−s

2
)

Γ
(
n−s+2

2
) (1 + 16w2)−

n−s+3
2 ,

or, by (4.19)

Ks(z, w) = |z|−2(n+2−s)Ks

(
1, w

|z|2
)

= cn,s
|z|2

|(z, w)|2 |(z, w)|−Q−2(1−s)

where the constant cn,s is given by

cn,s = 4
√
π

22−2sΓ(n + 2 − s)
πn+1

Γ
(
n+1−s

2
)

Γ
(
n−s+2

2
) .

By using Legendre’s duplication formula (4.15) and simplifying we get

cn,s = 2n+5−3sπ−n−1Γ
(n− s + 3

2

)
Γ
(n + 1 − s

2

)
. �

5. Ground state representations and Hardy inequalities

This section contains the proofs of our main results, namely, the Hardy inequalities 
for both operators Λs and Ls. Our proofs are fashioned after the one presented in [21] for 
the case of the Euclidean Laplacian. From the integral representations obtained for Ls

and Λs in the previous section we first prove the so called ground state representations 
for these operators. With these and Theorem 3.1, Hardy inequalities then become imme-
diate corollaries. We first present a simple proof of Theorem 1.1 following a suggestion 
given by the referee. This proof is short and elegant. Then we give another proof via 
Theorem 1.2 based on ideas from [21], which gives some improvements: it requires an 
integral representation for the operator Ls (which is provided in Proposition 4.1 and 
it is of independent interest, although it gives a restriction on the parameter s), and 
moreover it delivers an explicit expression for the error in the Hardy inequality.
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5.1. Proof of Theorems 1.1 and 1.2

The result of Theorem 3.1 can be restated as Lsu−s,δ = Cs,δus,δ, valid for −n+1
2 <

s < n+1
2 , where Cs,δ = (4δ)s Γ(Q+2s

4 )2

Γ(Q−2s
4 )2 and Q is the homogeneous dimension of Hn

given in (3.3). In particular, we have L−sus,δ = C−s,δu−s,δ for 0 < s < n+1
2 . Let 

v(z, w) = (δ + 1
4 |z|2)2 + w2 so that us,δ = v−s/2u0,δ. It then follows that the integral 

operator Tsf = v−s/2L−s(v−s/2f) satisfies Tsu0,δ = C−s,δu0,δ. By Schur test it follows 
that Ts is bounded on L2(Hn) and one has the inequality

∣∣∣ ∫
Hn

Tsf(x)f(x)dx
∣∣∣ ≤ C−s,δ

∫
Hn

|f(x)|2dx.

This inequality is equivalent to the boundedness of L1/2
−s v

−s/2 and v−s/2L1/2
−s leading to∫

Hn

|v−s/2(x)L1/2
−s f(x)|2dx ≤ C−s,δ

∫
Hn

|f(x)|2dx.

Applying this to L1/2
s f and noting that L−s = L−1

s we obtain the inequality in Theo-
rem 1.1 on a dense subspace. We also observe that if we take f = u−s,δ in Theorem 1.1
both sides of the inequality reduce to

(4δ)s
Γ(Q+2s

4 )2

Γ(Q−2s
4 )2

∫
Hn

u−s,δ(x)us,δ(x) dx.

This proves the optimality of the constant Cs,δ in our inequality, which is achieved when 
f = u−s,δ.

We now proceed to obtain a ground state representation for Ls which will lead to the 
ground state representation (Theorem 1.2) and hence another proof of Theorem 1.1. We 
begin with the next lemma which easily follows from the integral representation proved 
in Proposition 4.1.

Lemma 5.1. Let n ≥ 1 and 0 < s < 1. Then, for all f ∈ W s,2(Hn)

〈Lsf, f〉 = an,s

∫
Hn

∫
Hn

|f(x) − f(y)|2
|y−1x|Q+2s dx dy, (5.1)

where an,s is the positive constant

an,s = 2n−2+3s

πn+1
Γ
(
n+1+s

2
)2

|Γ(−s)| . (5.2)
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Proof. Let f ∈ C∞
0 (Hn). The integral representation obtained in Proposition 4.1 gives

〈Lsf, f〉 = 1
|Γ(−s)|

∞∫
0

(∫
Hn

(f(x) − f ∗ Ks
t (x))f(x) dx

)
t−s−1dt.

By Fubini, the integral can be written as

1
|Γ(−s)|

∫
Hn

∫
Hn

(
f(x) − f(y)

)
f(x)Ks(y−1x) dx dy,

where Ks is given in Proposition 4.2. As the kernel Ks(x) is symmetric, i.e., Ks(x) =
Ks(x−1) the above is also equal to

〈Lsf, f〉 = 1
|Γ(−s)|

∫
Hn

∫
Hn

(
f(y) − f(x)

)
f(y)Ks(y−1x) dx dy.

Adding them up we get

〈Lsf, f〉 = 1
2|Γ(−s)|

∫
Hn

∫
Hn

|f(x) − f(y)|2Ks(y−1x) dx dy.

The justification of the change of order of integration is as follows. By Proposition 4.2, 
we have that Ks(x) = cn,s|x|−Q−2s with cn,s as in (4.10), and we can check that

∫
Hn

∫
Hn

|f(x) − f(y)|2
|y−1x|Q+2s dx dy < ∞

when f ∈ C∞
0 (Hn). Consequently, we can apply Fubini to obtain (5.1) for f ∈ C∞

0 (Hn).
Let us take now f ∈ W s,2(Hn). Choose a sequence fk ∈ C∞

0 (Hn) such that fk
converges to f in W s,2(Hn). It is clear that 〈Lsfk, fk〉 converges to 〈Lsf, f〉 as k tends 
to infinity. Moreover, since we have just proved the result for functions in C∞

0 (Hn), we 
have

〈Lsfk, fk〉 = an,s

∫
Hn

∫
Hn

|fk(x) − fk(y)|2
|y−1x|Q+2s dx dy < ∞. (5.3)

Consequently, the functions Fk(x, y) = fk(x) −fk(y) form a Cauchy sequence in L2(Hn×
Hn, dμ) where

dμ(x, y) = 1
−1 Q+2s dx dy
|y x|
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which converges to f(x) − f(y) in this norm. Hence, passing to the limit in (5.3), we 
complete the proof of the lemma. �

We are now ready to state the ground state representation for the operator Ls. Let 
us set

Hs[f ] = 〈Lsf, f〉 − Cs,δ

∫
Hn

|f(z, w)|2(
(δ + 1

4 |z|2)2 + w2
)s dz dw

where Cs,δ = (4δ)s Γ(Q+2s
4 )2

Γ(Q−2s
4 )2 is the constant defined at the beginning of Section 5. Hardy’s 

inequality follows immediately if we could show that Hs[f ] is non-negative.
Recall the definition of the function us,δ(x) given in (3.1). Theorem 5.2 below is just 

Theorem 1.2. We repeat the statement here for easy reading.

Theorem 5.2. Let 0 < s < 1 and δ > 0. If F ∈ C∞
0 (Hn) and G(x) = F (x)u−s,δ(x)−1

then

Hs[F ] = an,s

∫
Hn

∫
Hn

|G(x) −G(y)|2
|y−1x|Q+2s u−s,δ(x)u−s,δ(y) dx dy,

where an,s is the positive constant (5.2).

Proof. By polarizing the representation in Lemma 5.1 we get for any f, g ∈ W s,2(Hn),

〈Lsf, g〉 = an,s

∫
Hn

∫
Hn

(f(x) − f(y))(g(x) − g(y))
|y−1x|Q+2s dx dy. (5.4)

We apply the above formula to g(x) = u−s,δ and f(x) = |F (x)|2g(x)−1. We remark 
that u−s,δ ∈ W s,2(Hn). Indeed, in view of Proposition 3.3 we know that Lsu−s,δ is a 
constant multiple of us,δ. As both us,δ and u−s,δ are square integrable it follows that 
u−s,δ ∈ W s,2(Hn). After simplification, the right hand side of (5.4) becomes

an,s

∫
Hn

∫
Hn

(
|F (x) − F (y)|2 −

∣∣∣∣F (x)
g(x) − F (y)

g(y)

∣∣∣∣2g(x)g(y)
)

dx dy

|y−1x|Q+2s .

On the other hand, in view of Theorem 3.1 the left hand side of (5.4) becomes

(4δ)s
Γ(Q+2s

4 )2

Γ(Q−2s
4 )2

∫
Hn

|F (x)|2
u−s,δ(x)us,δ(x) dx.

Since
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us,δ(x)
u−s,δ(x) =

(
(δ + 1

4 |z|
2)2 + w2)−s

by recalling the definition of G and using Lemma 5.1 we complete the proof of the 
theorem. �
5.2. Proof of Theorem 1.5

We need the following analogue of Lemma 5.1 which easily follows from the integral 
representation proved in Proposition 4.3.

Lemma 5.3. Let n ≥ 1 and 0 < s < 1. Then, for all f ∈ W 1−s,2(Hn)

〈Λ1−sf, f〉 = bn,s

∫
Hn

∫
Hn

|f(x) − f(y)|2
|y−1x|Q+2(1−s)ω(y−1x) dx dy, (5.5)

where ω(z, w) = |z|2|(z, w)|−2 and bn,s is the positive constant

bn,s = 2n+4−3s

πn+1
Γ
(
n+3−s

2
)
Γ
(
n+1−s

2
)

|Γ(s− 1)| . (5.6)

Proof. We first assume that f ∈ C∞
0 (Hn). The integral representation obtained in Propo-

sition 4.3 gives

〈Λ1−sf, f〉 = 1
|Γ(s− 1)|

∞∫
0

(∫
Hn

(f(x) − f ∗Ks
t (x))f(x) dx

)
ts−2dt.

As in the proof of Lemma 5.1, by using Fubini, the integral can be written as

1
|Γ(s− 1)|

∫
Hn

∫
Hn

(
f(x) − f(y)

)
f(x)Ks(y−1x) dx dy.

As the kernel Ks(x) is symmetric, i.e., Ks(x) = Ks(x−1) the above is also equal to

〈Λ1−sf, f〉 = 1
|Γ(s− 1)|

∫
Hn

∫
Hn

(
f(y) − f(x)

)
f(y)Ks(y−1x) dx dy.

Adding them up we get

〈Λ1−sf, f〉 = 1
2|Γ(s− 1)|

∫
Hn

∫
Hn

|f(x) − f(y)|2Ks(y−1x) dx dy.

By Proposition 4.4, Ks(x) = cn,sω(x)|x|−Q−2(1−s), where cn,s is as in (4.18), and we can 
check that
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∫
Hn

∫
Hn

|f(x) − f(y)|2
|y−1x|Q+2(1−s)ω(y−1x) dx dy < ∞

when f ∈ C∞
0 (Hn). Consequently, we can apply Fubini to change the order of integration 

to obtain (5.5) for f ∈ C∞
0 (Hn), with bn,s = cn,s

2|Γ(s−1)| .
We will extend the result to f ∈ W 1−s,2(Hn) and, as before, we use a density argu-

ment. Choose a sequence fk ∈ C∞
0 (Hn) such that fk converges to f in W 1−s,2(Hn). It 

is clear that 〈Λ1−sfk, fk〉 converges to 〈Λ1−sf, f〉 as k tends to infinity. Moreover, as ω
is bounded function, we have∫

Hn

∫
Hn

|fk(x) − fk(y)|2
|y−1x|Q+2(1−s) ω(y−1x) dx dy ≤ C

∫
Hn

∫
Hn

|fk(x) − fk(y)|2
|y−1x|Q+2(1−s) dx dy

= an,1−sC〈L1−sfk, fk〉

where we have made use of the result in Lemma 5.1. Consequently, the functions 
Fk(x, y) = fk(x) − fk(y) form a Cauchy sequence in L2(Hn ×Hn, dμ) where

dμ(x, y) = ω(y−1x)
|y−1x|Q+2(1−s) dx dy

which converges to f(x) − f(y) in this norm. Hence, passing to the limit in

〈Λ1−sfk, fk〉 = bn,s

∫
Hn

∫
Hn

|fk(x) − fk(y)|2
|y−1x|Q+2(1−s) ω(y−1x) dx dy,

we complete the proof of the lemma. �
We are now ready to state the ground state representation for the operator Λ1−s. Let 

us set

Hs[f ] = 〈Λ1−sf, f〉 −Bn,s

∫
Hn

|f(x)|2
|x|2(1−s) dx

where Bn,s = 22n+3(1−s) Γ(n+1−s
2 )2

Γ(s)Γ(n
2 )2 . Hardy’s inequality follows immediately if we could 

show that Hs[f ] is non-negative. Recall that we have denoted the fundamental solution 
of Ls by gs, which is a constant multiple of u−s,0, see (3.10) in Subsection 3.

Theorem 5.4. Let 0 < s < 1. Let F ∈ C∞
0 (Hn) be supported away from 0 and G(x) =

F (x)g1(x)−1 then

Hs[F ] = bn,s

∫ ∫ |G(x) −G(y)|2
|y−1x|Q+2(1−s) g1(x) g1(y) dx dy,
Hn Hn
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where bn,s is the positive constant (5.6).

Proof. By polarizing the representation in Lemma 5.3 we get for any f, g ∈ W 1−s,2(Hn),

〈Λ1−sf, g〉 = bn,s

∫
Hn

∫
Hn

(f(x) − f(y))(g(x) − g(y))
|y−1x|Q+2(1−s) ω(y−1x) dx dy. (5.7)

We apply the above formula to g(x) = u−1,δ(x) and f(x) = |F (x)|2g(x)−1. After simpli-
fication, the right hand side of (5.7) becomes

bn,s

∫
Hn

∫
Hn

(
|F (x) − F (y)|2 −

∣∣∣∣ F (x)
u−1,δ(x) − F (y)

u−1,δ(y)

∣∣∣∣2u−1,δ(x)u−1,δ(y)
)

× ω(y−1x)
|y−1x|Q+2(1−s) dx dy.

On the other hand, the left hand side of (5.7) can be simplified using the explicit formula 
for the Fourier transform of u−1,δ. Observe that 〈Λ1−sf, g〉 = 〈f, L−1

s Lu−1,δ〉 = 〈f, vs,δ〉
where vs,δ(x) = L−1

s Lu−1,δ(x). Thus we have the identity

〈f, vs,δ〉 = bn,s

∫
Hn

∫
Hn

(
|F (x) − F (y)|2 −

∣∣∣∣ F (x)
u−1,δ(x) − F (y)

u−1,δ(y)

∣∣∣∣2u−1,δ(x)u−1,δ(y)
)

× ω(y−1x)
|y−1x|Q+2(1−s) dx dy. (5.8)

By the arguments showed in Sections 2 and 3 we can deduce that the Fourier transform 
of vs,δ is given by

v̂s,δ(λ) =
∞∑
k=0

aλk,δ(s)Pk(λ)

where

aλk,δ(s) = (2k + n)|λ|cλk,δ(−1)(2|λ|)−s Γ(2k+n
2 + 1−s

2 )
Γ(2k+n

2 + 1+s
2 )

.

Using the explicit formula for cλk,δ(s) in Proposition 3.2 we have

aλk,δ(s) = (2k + n)|λ|(2|λ|)−s Γ(2k+n
2 + 1−s

2 )
Γ(2k+n

2 + 1+s
2 )

(2π)n+1|λ|−1(
Γ(n2 )

)2 L
(
δλ,

2k + n

2 ,
2k + n

2 + 1
)
.

By letting δ go to zero and noting that
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L
(
0, 2k + n

2 ,
2k + n

2 + 1
)

=
Γ(2k+n

2 )
Γ(2k+n

2 + 1)
= 2

2k + n

we see that vs,δ converges in the sense of distributions to

2(2π)n+1

Γ(n2 )2 gs(x) = 2(2π)n+1

Γ(n2 )2
2n+1−3sΓ

(
n+1−s

2
)2

πn+1Γ(s) |x|−Q+2s.

Thus 〈f, vs,δ〉 converges to

22n+3(1−s)Γ
(
n+1−s

2
)2

Γ(s)Γ(n2 )2

∫
Hn

|F (x)|2
|x|2(1−s) dx.

On the other hand, as F is supported away from 0, the right hand side of (5.8) converges 
to

bn,s

∫
Hn

∫
Hn

(
|F (x) − F (y)|2 −

∣∣∣∣F (x)
g1(x) − F (y)

g1(y)

∣∣∣∣2g1(x)g1(y)
)

ω(y−1x)
|y−1x|Q+2(1−s) dx dy.

Since

bn,s

∫
Hn

∫
Hn

|F (x) − F (y)|2 ω(y−1x)
|y−1x|Q+2(1−s) dx dy = 〈Λ1−sF, F 〉,

the ground state representation is proved. �
Remark 5.5. The ground state representation proved above immediately leads to Hardy’s 
inequality under the assumption that F is supported away from the origin. However, 
this extra condition can be removed arguing as follows. Note that for any δ > 0 we have 
proved the inequality

∫
Hn

|F (x)|2
u−1,δ(x)vs,δ(x) dx ≤ 〈Λ1−sF, F 〉

valid for any F ∈ C∞
0 (Hn). Since

4−n

∫
Hn

|F (x)|2|x|2nvs,δ(x) dx ≤
∫
Hn

|F (x)|2
u−1,δ(x)vs,δ(x) dx ≤ 〈Λ1−sF, F 〉

we can pass to the limit as δ goes to zero. As vs,δ converges in the sense of distributions 
to a constant multiple of gs we get the required inequality.
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5.3. Hardy inequalities for Ls

Now, by comparing Ls with Ls we can obtain Hardy inequalities for Ls. We have 
stated them in Theorem 1.4 and Theorem 1.6. These inequalities involve certain bounded 
operators Us and Vs and by estimating the norms of these, we can get Hardy inequalities 
for Ls. Though the resulting inequalities are not sharp, we state them here for the sake 
of completeness.

We will estimate in detail the norm of Vs. Since Vs = L−1
1−sLL−s, it corresponds to 

the multiplier

(2k + n

2

)1−s Γ
(2k+n

2 + s
2
)

Γ
( 2k+n

2 + 2−s
2

)
which clearly shows that it is bounded on L2(Hn). Moreover, the formula (see for instance 
[32, Section 7]),

Γ(x + α)
Γ(x + β) = 1

Γ(β − α)

∞∫
0

e−(x+α)v(1 − e−v)β−α−1 dv

valid for β − α > 0, gives

(x + β) Γ(x + α)
Γ(x + β + 1) = (x + β)

Γ(β + 1 − α)

∞∫
0

e−(x+α)v(1 − e−v)β−α dv

≤ (x + β)(x + α)−(β−α)−1.

Consequently, if α > 0, we have that xβ−α Γ(x+α)
Γ(x+β) ≤ x+β

x+α . With x = 2k+n
2 , β = 2−s

2 and 
α = s

2 we get

(2k + n

2

)1−s Γ
(2k+n

2 + s
2
)

Γ
(2k+n

2 + 2−s
2

) ≤ (2k + n + 2 − s)
(2k + n + s) ≤ (n + 2 − s)

(n + s) .

Thus, we have the inequality

〈Lsf, f〉 ≥ (n + s)
(n + 2 − s)

22n+3sΓ
(
n+s

2
)2

Γ(1 − s)Γ
(
n
2
)2 ∫

Hn

|f(x)|2
|x|2s dx.

In a similar way we can also estimate the norm of Us = LsL−s, that is given by (1.5). 
We leave the computation for the interested reader.
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5.4. Hardy–Littlewood–Sobolev inequality for Ls

In this subsection we briefly recall the Hardy–Littlewood–Sobolev inequality for Ls

due to Frank and Lieb in [20] and show how to deduce a slightly weaker form of Hardy 
inequality for Ls. In the present subsection we follow the notation used in [11]. Therein 
the group law on the Heisenberg group is given by

(z, w)(z′, w′) = (z + z′, w + w′ + 2 Im(z · z̄′)

and the sublaplacian L is defined as

L = −1
4

n∑
j=1

(
X̃2

j + Ỹ 2
j

)
.

Here the vector fields adapted to the above group structure are given by

X̃j =
(

∂

∂xj
+ 2yj

∂

∂t

)
, Ỹj =

(
∂

∂yj
− 2xj

∂

∂t

)
, j = 1, 2, . . . , n.

Recall that our sublaplacian L is defined by

L = −
n∑

j=1
(X2

j + Y 2
j )

with

Xj =
(

∂

∂xj
+ 1

2yj
∂

∂t

)
, Yj =

(
∂

∂yj
− 1

2xj
∂

∂t

)
, j = 1, 2, . . . , n.

It is easy to see that these two operators are related by the equation Lg(z, w) =
(Lf)(2z, w), where g(z, w) = f(2z, w). More generally, we have Lsg(z, w) = (Lsf)(2z, w).

The HLS inequality as stated in [11] reads as

Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2ω s

n+1
2n+1

(∫
Hn

|g(z, w)|
2(n+1)
n+1−s dzdw

)n+1−s
(n+1)

≤ 〈Lsg, g〉.

Since ∫
Hn

Lsg(z, w)g(z, w)dz dw = 2−2n
∫
Hn

Lsf(z, w)f(z, w)dz dw

the HLS inequality for Ls takes the form
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Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2ω s

n+1
2n+1

(
2−2n

∫
Hn

|f(z, w)|
2(n+1)
n+1−s dzdw

)n+1−s
(n+1)

≤ 2−2n〈Lsf, f〉

Now by applying Holder’s inequality,

∫
Hn

|g(z, w)|2(
(1 + |z|2)2 + w2

)s dz dw ≤ k(n, 1)
s

n+1

(∫
Hn

|g(z, w)|
2(n+1)
n+1−s dzdw

)n+1−s
(n+1)

where k(n, 1) is the constant defined by

k(n, 1) =
∫
Hn

(
(1 + |z|2)2 + w2)−n−1

dzdw.

This integral has been evaluated in [14] and we have

k(n, 1) = πn+12−2n

Γ(n + 1) = 2−2n−1ω2n+1

where the measure ωn of the unit sphere Sn in Rn+1 is given by 2π
n+1

2

Γ(n+1
2 ) . Thus we have

4s
Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2 ∫

Hn

|g(z, w)|2(
(1 + |z|2)2 + w2

)s dz dw

≤ 4s
Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2 (2−2n−1ω2n+1

) s
n+1

(∫
Hn

|g(z, w)|
2(n+1)
n+1−s dzdw

)n+1−s
(n+1)

.

In view of the HLS inequality, we obtain

4s
Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2 ∫

Hn

|g(z, w)|2(
(1 + |z|2)2 + w2

)s dz dw ≤ 2
s

n+1 〈Lsg, g〉.

Consequently, we have the inequality

4s
Γ
(1+n+s

2
)2

Γ
(1+n−s

2
)2 ∫

Hn

|f(z, w)|2(
(1 + 1

4 |z|2)2 + w2
)s dz dw ≤ 2

s
n+1 〈Lsf, f〉

which is weaker than the inequality stated in Theorem 1.1.
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Appendix A. Hardy’s inequality in the Euclidean case revisited

For the sake of completeness, here we recall and reprove the fractional Hardy inequality 
in the Euclidean space (1.4).

It was already said in the introduction that an improvement of this inequality was 
obtained by Frank et al. in [21], by using the ground state representation technique. We 
are going to reproduce the proof, but getting an integral representation of the fractional 
powers of the Euclidean Laplacian via the semigroup language. Although the integral 
representation in this Euclidean case is well known, maybe the use of the semigroup 
language to get it is not so known. Moreover, since our integral representations for the 
conformally invariant powers of the sublaplacian are based on the semigroup language, 
we would also like to show that the Euclidean case can be treated with the semigroup 
approach as well. Moreover, the constants are quickly obtained in this way.

We recall that the heat semigroup was introduced systematically to define fractional 
powers of second order partial differential operators in [28].

Let us follow the scheme we showed for the fractional powers of the conformally 
invariant sublaplacian on Hn. Nevertheless, we will not show the proofs rigorously, since 
they can be found somewhere else.

For x ∈ Rn and t > 0, let Gt(x) denote the Euclidean heat kernel, that is,

Gt(x) = 1
(4πt)n/2

e−
|x|2
4t .

For a function f good enough, the heat semigroup e−tΔf is defined as the convolution 
(Gt ∗ f)(x), thus

e−tΔf(x) =
∫
Rn

Gt(x− y)f(y) dy.

It is very well known that e−tΔ1 = 1.
Let 0 < s < 1. In terms of Gt, we define another kernel Gs by
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Gs(x) = 1
|Γ(−s)|

∞∫
0

Gt(x)t−s−1 dt.

This kernel can be explicitly computed. Actually, we have a more general result. Let 
α ∈ R be such that 0 < α < n/2, and define

gα(x) := 1
Γ(α)

1
(4π)n/2

∞∫
0

e−
|x|2
4t tα−1−n/2 dt.

We can easily check the following elementary lemma.

Lemma A.1. Let n ≥ 1 and α ∈ R be such that 0 < α < n/2 and x ∈ Rn. Then,

gα(x) = Γ(n/2 − α)
Γ(α)4απn/2 |x|

2α−n.

Proof. The proof follows immediately after making the change of variable z = |x|2
4t , and 

taking into account the definition of the Gamma function. �
Observe that, in particular, from Lemma A.1, we have that

Gs(x) = 4sΓ(n/2 + s)
|Γ(−s)|πn/2 |x|−2s−n. (A.1)

An integral representation for Δsf can be obtained for functions f ∈ S, where S is 
the class of rapidly decreasing C∞(Rn) functions. The complete, rigorous proof of this 
result can be found in [28, Lemma 5.1].

Proposition A.2. Let n ≥ 1 and 0 < s < 1. Then, for all f ∈ S, we have the following 
pointwise representation

Δsf(x) = P.V.

∫
Rn

(
f(x) − f(y)

)
Gs(x− y) dy,

where Gs(x) is given in (A.1).

Proof. We have

e−tΔf(x) − f(x) = e−tΔf(x) − f(x)e−tΔ1(x)

=
∫
Rn

Gt(x− y)f(y) dy − f(x)
∫
Rn

Gt(x− y) dy

=
∫
Rn

Gt(x− y)
(
f(y) − f(x)

)
dy.
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Then, motivated by the numerical identity λs = 1
Γ(−s)

∫∞
0 (e−tλ− 1) dt

t1+s , λ > 0, we have

Δsf(x) = 1
Γ(−s)

∞∫
0

(
e−tΔf(x) − f(x)

) dt

t1+s

= 1
Γ(−s)

∞∫
0

∫
Rn

Gt(x− y)
(
f(y) − f(x)

)
dy

dt

t1+s

= 1
Γ(−s)

∫
Rn

(
f(y) − f(x)

) ∞∫
0

Gt(x− y) dt

t1+s
dy

=
∫
Rn

(
f(x) − f(y)

)
Gs(x− y) dy.

The justification of the change of the order of integration is detailed in [28, Lemma 3.1] �
Then, the procedure is as described in [21]. The next lemma follows from the integral 

representation in Proposition A.2, by using the symmetry of the kernel.

Lemma A.3. Let n ≥ 1 and 0 < s < 1. Then, for all f ∈ C∞
0 (Rn)

〈Δsf, f〉 = en,s

∫
Rn

∫
Rn

|f(x) − f(y)|2
|x− y|n+2s dx dy,

where en,s is the positive constant

en,s = 4sΓ(n/2 + s)
2|Γ(−s)|πn/2 .

Finally, let the corresponding ground state representation for the operator Δs be given 
by

Hs[f ] = 〈Δsf, f〉 −En,s

∫
Hn

|f(x)|2
|x|2s dx,

where

En,s = 4s
Γ(n+2s

4 )2

Γ(n−2s
4 )2

. (A.2)

In the following theorem it is shown that Hs[f ] is positive.
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Theorem A.4. Let 0 < s < 1, s < n/2, and α > s. If u ∈ C∞
0 (Rn) and v(x) =

u(x)(gα(x))−1. Then

Hs[u] = en,s

∫
Rn

∫
Rn

|v(x) − v(y)|2
|x− y|n+2s gα(x)gα(y) dx dy.

Proof. By polarizing the representation in Lemma A.3, we get, for any f, g ∈ C∞
0 (Rn),

〈Δsf, g〉 = en,s

∫
Rn

∫
Rn

(f(x) − f(y))(g(x) − g(y))
|x− y|n+2s dx dy. (A.3)

We take g(x) = gα(x) and f(x) = |u(x)|2gα(x)−1. Since ĝα(ξ) = |ξ|−α, and by 
Plancherel, the left hand side of (A.3) equals∫

Rn

|ξ|sf̂(ξ)ĝ(ξ) dξ =
∫
Rn

f̂(ξ)|ξ|s−α dξ =
∫
Rn

|u(x)|2 gα−s(x)
gα(x) dx.

After simplification, the right hand side of (A.3) becomes

en,s

∫
Rn

∫
Rn

(
|u(x) − u(y)|2 −

∣∣∣∣ u(x)
gα(x) − u(y)

gα(y)

∣∣∣∣2gα(x)gα(y)
)

1
|x− y|n+2s dx dy.

By Lemma A.3, and taking into account the definition of gα, the proof is completed. �
As a corollary, we recover the fractional Hardy inequality in the Euclidean space.

Corollary A.5. Let n ≥ 1 and 0 < s < 1 such that n/2 > s. Then, for u ∈ C∞
0 (Rn), we 

have

En,s

∫
Rn

|f(x)|2
|x|2s dx ≤ 〈Δsf, f〉,

where the sharp constant En,s is given in (A.2).

Proof. From Lemma A.3 and Theorem A.4 we can deduce immediately that

〈Δsf, f〉 ≥
∫
Rn

|f(x)|2 gα−s(x)
gα(x) dx = 4sΓ(n/2 − α + s)Γ(α)

Γ(α− s)Γ(n/2 − α)

∫
Rn

|f(x)|2 dx

|x|2s

where we used Lemma A.1 in the last equality. By choosing α = n
4 + s

2 , we obtain the 
required result. �
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